1,742 research outputs found

    Generation of a short fibre biocomposite representative volume element

    Get PDF
    One of the greatest challenge in working with natural fibre composites is the large variation in mechanical properties that result from the geometric inconsistency amongst fibres. Traditional design tools and models are unable to accurately incorporate this non-homogeneity to predict the resulting local behaviour of biocomposite materials. The following paper presents a methodology to generate a representative volume element (RVE) to simulate the material microstructure of short fibre composites, with the intent of modelling the popular class of short fibre biocomposites materials. The capabilities of a range of particle packing algorithms used in literature are compared in terms of the maximum volume fraction they have been able to achieve and for what fibre length to diameter aspect ratio. The methodology is able to account for the characteristics of fibre geometry samples, according to their probability density functions (PDFs). The RVE generation strategy imposes periodic boundary conditions and fibres are declared invalid if an intersection between fibres is detected. The effect of different PDFs on the resulting RVE are discussed. An RVE populated with data following a Weibull distribution is compared to that from normally distributed data with an equal mean but varied standard deviations. Using a Weibull distribution to simulate the characteristics of an RVE requires a significantly higher number of fibres than any comparable normal distribution, due to the skewness of the data towards large values at low probabilities. The highest volume fraction achieved was 40% for an RVE containing fibres with lengths distributed according to a Weibull distribution and aspect ratios of 15. The future intent of this work is to perform finite element analysis on RVE samples with a range of varied microstructure characteristics to determine the effect on overall composite properties, which will provide new insights on how best to formulate short fibre compounds

    X Chromosome Inactivation and Xist Evolution in a Rodent Lacking LINE-1 Activity

    Get PDF
    Dosage compensation in eutherian mammals occurs by inactivation of one X chromosome in females. Silencing of that X chromosome is initiated by Xist, a large non-coding RNA, whose coating of the chromosome extends in cis from the X inactivation center. LINE-1 (L1) retrotransposons have been implicated as possible players for propagation of the Xist signal, but it has remained unclear whether they are essential components. We previously identified a group of South American rodents in which L1 retrotransposition ceased over 8 million years ago and have now determined that at least one species of these rodents, Oryzomys palustris, still retains X inactivation. We have also isolated and analyzed the majority of the Xist RNA from O. palustris and a sister species retaining L1 activity, Sigmodon hispidus, to determine if evolution in these sequences has left signatures that might suggest a critical role for L1 elements in Xist function. Comparison of rates of Xist evolution in the two species fails to support L1 involvement, although other explanations are possible. Similarly, comparison of known repeats and potential RNA secondary structures reveals no major differences with the exception of a new repeat in O. palustris that has potential to form new secondary structures

    Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh

    Get PDF
    Tidal salt marshes are important contributors to soil carbon (C) stocks despite their relatively small land surface area. Although it is well understood that salt marshes have soil C burial rates orders of magnitude greater than those of terrestrial ecosystems, there is a wide range in accrual rates among spatially distributed marshes. In addition, wide ranges in C accrual rates also exist within a single marsh ecosystem. Tidal marshes often contain multiple species of cordgrass due to variations in hydrology and soil biogeochemistry caused by microtopography and distance from tidal creeks, creating distinct subsites. Our overarching objective was to observe how soil C concentration and dissolved organic carbon (DOC) vary across four plant phenophases and across three subsites categorized by unique vegetation and hydrology. We also investigated the dominant biogeochemical controls on the spatiotemporal variability of soil C and DOC concentrations. We hypothesized that subsite biogeochemistry drives spatial heterogeneity in soil C concentration, and this causes variability in total soil C and DOC concentrations at the marsh scale. In addition, we hypothesized that soil C concentration and porewater biogeochemistry vary temporally across the four plant phenophases (i.e., senescence, dormancy, green-up, maturity). To test these interrelated hypotheses, we quantified soil C and DOC concentrations in 12 cm sections of soil cores (0–48 cm depth) across time (i.e., phenophase) and space (i.e., subsite), alongside several other porewater biogeochemical variables. Soil C concentration varied significantly (p &lt; 0.05) among the three subsites and was significantly greater during plant dormancy. Soil S, porewater sulfide, redox potential, and depth predicted 44 % of the variability in soil C concentration. There were also significant spatial differences in the optical characterization properties of DOC across subsites. Our results show that soil C varied spatially across a marsh ecosystem by up to 63 % and across plant phenophase by 26 %, causing variability in soil C accrual rates and stocks depending on where and when samples are taken. This shows that hydrology, biogeochemistry, and plant phenology are major controls on salt marsh C content. It is critical to consider spatiotemporal heterogeneity in soil C concentration and porewater biogeochemistry to account for these sources of uncertainty in C stock estimates. We recommend that multiple locations and sampling time points are sampled when conducting blue C assessments to account for ecosystem-scale variability.</p

    Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer-estuary interface

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brooks, T. W., Kroeger, K. D., Michael, H. A., & York, J. K. Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer-estuary interface. Limnology and Oceanography, 66, (2021): 3055-3069, https://doi.org/10.1002/lno.11858.Nutrient loads delivered to estuaries via submarine groundwater discharge (SGD) play an important role in the nitrogen (N) budget and eutrophication status. However, accurate and reliable quantification of the chemical flux across the final decimeters and centimeters at the sediment–estuary interface remains a challenge, because there is significant potential for biogeochemical alteration due to contrasting conditions in the coastal aquifer and surface sediment. Here, a novel, oxygen- and light-regulated ultrasonic seepage meter, and a standard seepage meter, were used to measure SGD and calculate N species fluxes across the sediment–estuary interface. Coupling the measurements to an endmember approach based on subsurface N concentrations and an assumption of conservative transport enabled estimation of the extent of transformation occurring in discharging groundwater within the benthic zone. Biogeochemical transformation within reactive estuarine surface sediment was a dominant driver in modifying the N flux carried upward by SGD, and resulted in a similar percentage of N removal (~ 42–52%) as did transformations occurring deeper within the coastal aquifer salinity mixing zone (~ 42–47%). Seasonal shifts in the relative importance of biogeochemical processes including denitrification, nitrification, dissimilatory nitrate reduction, and assimilation altered the composition of the flux to estuarine surface water, which was dominated by ammonium in June and by nitrate in August, despite the endmember-based observation that fixed N in discharging groundwater was strongly dominated by nitrate. This may have important ramifications for the ecology and management of estuaries, since past N loading estimates have generally assumed conservative transport from the nearshore aquifer to estuary.This work was supported by an award from Delaware Sea Grant (award No. NA100AR4170084 to J.K.Y. and K.D.K.), and by the USGS Coastal and Marine Hazards and Resources Program

    The Feasibility of Imaging Myocardial Ischemic/Reperfusion Injury Using \u3csup\u3e99m\u3c/sup\u3eTc-labeled Duramycin in a Porcine Model

    Get PDF
    When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. 99mTc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of 99mTc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia–reperfusion injury. Methods The clearance and distribution of intravenously injected 99mTc-duramycin were characterized in sham-operated animals (n = 5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n = 9). 99mTc-duramycin (10–15 mCi) was injected intravenously at 1 hour after reperfusion. SPECT/CT was acquired at 1 and 3 hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting were used to determine radioactivity uptake. For the remaining animals, 99mTc-tetrafosamin scan was performed on the second day to identify the infarct site. Results Intravenously injected 99mTc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6 ± 0.3 minutes and β-phase half-life of 179.9 ± 64.7 minutes. In control animals, the ratios between normal heart and lung were 1.76 ± 0.21, 1.66 ± 0.22, 1.50 ± 0.20 and 1.75 ± 0.31 at 0.5, 1, 2 and 3 hours post-injection, respectively. The ratios between normal heart and liver were 0.88 ± 0.13, 0.80 ± 0.13, 0.82 ± 0.19 and 0.88 ± 0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30 min post-injection. The in vivo ischemic-to-normal uptake ratios were 3.57 ± 0.74 and 3.69 ± 0.91 at 1 and 3 hours post-injection, respectively. Ischemic-to-lung ratios were 4.89 ± 0.85 and 4.93 ± 0.57; and ischemic-to-liver ratios were 2.05 ± 0.30 to 3.23 ± 0.78. The size of 99mTc-duramycin positive myocardium was qualitatively larger than the infarct size delineated by the perfusion defect in 99mTc-tetrafosmin uptake. This was consistent with findings from tissue analysis and autoradiography. Conclusion 99mTc-duramycin was demonstrated, in a large animal model, to have suitable clearance and biodistribution profiles for imaging. The agent has an avid target uptake and a fast background clearance. It is appropriate for imaging myocardial injury induced by ischemia/reperfusion

    Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment

    Get PDF
    Background: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans. Results: We first examined whether mice and humans experience similar patterns of change in the methylome with age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice subjected to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary rapamycin. We found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than their untreated, wild-type age-matched controls. Conclusions: This study shows that lifespan-extending conditions can slow molecular changes associated with an epigenetic clock in mice livers

    The role of language in the experience and perception of emotion: a neuroimaging meta-analysis

    Get PDF
    Recent behavioral and neuroimaging studies demonstrate that labeling one’s emotional experiences and perceptions alters those states. Here, we used a comprehensive meta-analysis of the neuroimaging literature to systematically explore whether the presence of emotion words in experimental tasks has an impact on the neural representation of emotional experiences and perceptions across studies. Using a database of 386 studies, we assessed brain activity when emotion words (e.g. ‘anger’, ‘disgust’) and more general affect words (e.g. ‘pleasant’, ‘unpleasant’) were present in experimental tasks vs not present. As predicted, when emotion words were present, we observed more frequent activations in regions related to semantic processing. When emotion words were not present, we observed more frequent activations in the amygdala and parahippocampal gyrus, bilaterally. The presence of affect words did not have the same effect on the neural representation of emotional experiences and perceptions, suggesting that our observed effects are specific to emotion words. These findings are consistent with the psychological constructionist prediction that in the absence of accessible emotion concepts, the meaning of affective experiences and perceptions are ambiguous. Findings are also consistent with the regulatory role of ‘affect labeling’. Implications of the role of language in emotion construction and regulation are discussed

    Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed

    Get PDF
    © The Author(s), 2016. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology 538 (2016): 783–793, doi:10.1016/j.jhydrol.2016.05.013.Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwaterborne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.This work was funded by the National Science Foundation (EAR-0910756 and EAR- 0911805).2017-05-1
    • …
    corecore