45 research outputs found

    Rigorous bounds on transport from causality

    Full text link
    We use causality to derive a number of simple and universal constraints on dispersion relations, which describe the location of singularities of retarded two-point functions in relativistic quantum field theories. We prove that all causal dissipative dispersion relations have a finite radius of convergence. We then give two-sided bounds on all transport coefficients in units of this radius, including an upper bound on diffusivity.Comment: 4 pages. New relational bound on sound attenuation, improved test function, references adde

    Viscous hydrodynamics relaxation time from AdS/CFT

    Get PDF
    We consider an expanding boost-invariant plasma at strong coupling using the AdS/CFT correspondence for N=4 SYM. We determine the relaxation time in second order viscous hydrodynamics and find that it is around thirty times shorter than weak coupling expectations. We find that the nonsingularity of the dual geometry in the string frame necessitates turning on the dilaton which leads to a nonvanishing expectation value for tr F^2 behaving like tau^(-10/3).Comment: 10 pages, Mathematica script included in the source; v2: typo in (28) fixed, statement about electric/magnetic modes correcte

    Black brane entropy and hydrodynamics: the boost-invariant case

    Full text link
    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.Comment: RevTeX, 42 pages, 4 figure

    Transseries for causal diffusive systems

    Get PDF
    The large proper-time behaviour of expanding boost-invariant fluids has provided many crucial insights into quark-gluon plasma dynamics. Here we formulate and explore the late-time behaviour of nonequilibrium dynamics at the level of linearized perturbations of equilibrium, but without any special symmetry assumptions. We introduce a useful quantitative approximation scheme in which hydrodynamic modes appear as perturbative contributions while transients are nonperturbative. In this way, solutions are naturally organized into transseries as they are in the case of boost-invariant flows. We focus our attention on the ubiquitous telegrapher's equation, the simplest example of a causal theory with a hydrodynamic sector. In position space we uncover novel transient contributions as well as Stokes phenomena which change the structure of the transseries based on the spacetime region or the choice of initial data.Comment: 23 pages + appendices, 16 figure

    On the apparent horizon in fluid-gravity duality

    Full text link
    This article develops a computational framework for determining the location of boundary-covariant apparent horizons in the geometry of conformal fluid-gravity duality in arbitrary dimensions. In particular, it is shown up to second order and conjectured to hold to all orders in the gradient expansion that there is a unique apparent horizon which is covariantly expressible in terms of fluid velocity, temperature and boundary metric. This leads to the first explicit example of an entropy current defined by an apparent horizon and opens the possibility that in the near-equilibrium regime there is preferred foliation of apparent horizons for black holes in asymptotically-AdS spacetimes

    Consistent holographic description of boost-invariant plasma

    Full text link
    Prior attempts to construct the gravity dual of boost-invariant flow of N=4 supersymmetric Yang-Mills gauge theory plasma suffered from apparent curvature singularities in the late time expansion. This Letter shows how these problems can be resolved by a different choice of expansion parameter. The calculations presented correctly reproduce the plasma energy-momentum tensor within the framework of second order viscous hydrodynamics.Comment: Title changed; the coordinate transformation between FG and EF coordinates elucidated; version published in PR

    A new derivation of Luscher F-term and fluctuations around the giant magnon

    Get PDF
    15 pages, no figures; v2: added assumption on diagonal scattering and a section on generalizations; v3: minor changes, version accepted for publication in JHEPIn this paper we give a new derivation of the generalized Luscher F-term formula from a summation over quadratic fluctuations around a given soliton. The result is very general providing that S-matrix is diagonal and is valid for arbitrary dispersion relation. We then apply this formalism to compute the leading finite size corrections to the giant magnon dispersion relation coming from quantum fluctuations.Peer reviewe

    The SST-1M project for the Cherenkov Telescope Array

    Get PDF
    The SST-1M project, run by a Consortium of institutes from Czech Republic, Poland and Switzerland, has been proposed as a solution for implementing the small-size telescope array of the southern site of the Cherenkov Telescope Array. The technology is a pathfinder for efficient production of cost-effective imaging air Cherenkov telescopes. We report on the main system features and recent upgrades, the performances validation and the operation campaign carried out in 2018
    corecore