6 research outputs found

    IFMIF, the European–Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: Current status and future options

    Get PDF
    The necessity of a neutron source for fusion materials research was identified already in the 70s. Though neutrons induced degradation present similarities on a mechanistic approach, thresholds energies for crucial transmutations are typically above fission neutrons spectrum. The generation of He via 56Fe (n,α) 53Cr in future fusion reactors with around 12 appm/dpa will lead to swelling and structural materials embrittlement. Existing neutron sources, namely fission reactors or spallation sources lead to different degradation, attempts for extrapolation are unsuccessful given the absence of experimental observations in the operational ranges of a fusion reactor. Neutrons with a broad peak at 14 MeV can be generated with Li(d,xn) reactions; the technological efforts that started with FMIT in the early 80s have finally matured with the success of IFMIF/EVEDA under the Broader Approach Agreement. The status today of five technological challenges, perceived in the past as most critical, are addressed. These are: 1. the feasibility of IFMIF accelerators, 2. the long term stability of lithium flow at IFMIF nominal conditions, 3. the potential instabilities in the lithium screen induced by the 2 × 5 MW impacting deuteron beam, 4. the uniformity of temperature in the specimens during irradiation, and 5. the validity of data provided with small specimens. Other ideas for fusion material testing have been considered, but they possibly are either not technologically feasible if fixed targets are considered or would require the results of a Li(d,xn) facility to be reliably designed. In addition, today we know beyond reasonable doubt that the cost of IFMIF, consistently estimated throughout decades, is marginal compared with the cost of a fusion reactor. The less ambitious DEMO reactor performance being considered correlates with a lower need of fusion neutrons flux; thus IFMIF with its two accelerators is possibly not needed since with only one accelerator as the European DONES or the Japanese A-FNS propose, the present needs > 10 dpa/fpy would be fulfilled. World fusion roadmaps stipulate a fusion relevant neutron source by the middle of next decade, the success of IFMIF/EVEDA phase is materializing this four decades old dream

    Methodology for Remote Handling Operations in IFMIF-DONES

    No full text
    The International Fusion Material Irradiation Facility-DEMO Oriented NEutron Source (IFMIF-DONES) is composed of numerous complex systems and components that need on-site maintenance. Such need requires Remote Handling (RH) operations with advanced technology that is capable of preventing exposure to radiation and complying with stringent plant requirements in hostile environments. Moreover, specific design and integration of the RH systems have to be carried out in order to properly comply with constraints and procedures for remote operations, which in most cases become an engineering challenge. This paper presents a RH methodology that covers all the necessary aspects for the entire rigorous implementation and execution of remote operation in IFMIF-DONES. The methodology is made up of a set of different stages, which are based on the initial cooperation among different teams involved in the remote operation cycle. This approach leads to an iterative process that allows optimization and improvement of remote operations. It aims at accelerating the process with safer and robust concept of maintenance, simplified procedures, minimized breakdowns and reduced cost and time.This work has been partially supported by “Technofusión(II) CM (P2013/MAE-2745). Moreover, this work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Peer reviewe

    Concept design of DEMO divertor cassette remote handling: Simply supported beam approach

    No full text
    The present work focused on the development of a new approach to the concept design of DEMO Diver tor Cassette (DC) Remote Handling Equipment (RHE). The approach is based on three main assumptions: the DC remote handling activities and the equipment shall be simplified as much as possible; technologies well known and consolidated in the industrial context can be adopted also in the nuclear fusion field; the design of the RHE should be based on a simply supported beam approach instead of cantilever approach. In detail, during the maintenance activities the barycentre of the DC is centred with respect to DC supports. This solution could simplify the design of RHE with a consequent reduction of the design and development costs. Moreover also the DC remote handling tasks shall be simplified in order to better manage the DC maintenance processes: For this reason the DC assembly and disassembly process has been simplified dividing the main sequences in basic movements. For each movement a dedicated tool has been conceived

    The remote handling system of IFMIF-DONES

    No full text
    The International Fusion Materials Irradiation Facility-DEMO Oriented Neutron Source (IFMIF-DONES) consists of complex systems and massive components that need to be on site assembled and maintained. For several of them it is required to perform maintenance, inspection and monitoring tasks over many years in a hostile environment and in efficient, safe and reliable manner. The maintenance of IFMIF-DONES’ systems and components, located mainly in the Test Systems (TS), in the Lithium Systems (LS) and in the Accelerator Systems (AS), is classified as a Remote Handling (RH) Class 1st activity and as such is considered a crucial and essential activity whose success will strictly depend on the IFMIF-DONES RH capability. According to this, a Remote Handling System (RHS) for IFMIF-DONES, which comprises the whole set of Remote Handling Equipment and tooling for the execution of maintenance tasks, has been designed. A wide range of technologies is involved: special cranes, manipulator arms, lift interface frames, special cameras, control systems and virtual reality. In this paper an overview on status of the design of the main robotic systems and tooling of the RHS of IFMIF-DONES, including design requirements, functions and maintenance tasks to be performed, is given
    corecore