13 research outputs found

    ROR1-targeted adoptive immunotherapies

    Get PDF
    The tumour antigen ROR1 plays a critical role in tumorigenesis and is overexpressed in several haematological and solid malignancies including triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC). Its absence on most of healthy tissues makes it an attractive target for cancer immunotherapy. Cancer immunotherapy has opened a new era of cancer treatments. Successful examples include therapeutic antibodies (e.g. Rituximab, and immune checkpoint inhibitors) and adoptive cell therapy with engineered T cells expressing a Chimeric Antigen Receptor (CAR), particularly against haematological malignancies. CAR-T cells have so far had limited success against solid tumours. Overexpression of inhibitory receptor ligands such as PD-L1 by tumour cells is one of the main mechanisms that makes the anti-tumour immune response ineffective. We developed a second generation ROR1-41BB-CD3ζ CAR targeting ROR1. These CAR-T cells rapidly acquired a phenotype associated with increased expression of programmed death receptor 1 (PD-1) following exposure to ROR1-expressing tumour targets. To bolsters potency, we engineered the lentiviral CAR construct to enable IL-2 mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumour environment following CAR T-cell activation. Local secretion of anti-PD1 scFv led to increased anti-tumour activity against TNBC and NSCLC tumour cell lines in in vitro co-culture studies. In a murine xenograft model of TNBC, tumour growth was significantly decreased and associated with a significant survival benefit compared to parental ROR1 CAR-T cells and to combination therapy with ROR1 CAR-T cells and anti-PD1 monoclonal antibody. Thus, second-generation CAR T cells engineered to secrete anti-PD-1 scFv shows promise and represents a clinically relevant approach to improving potency of CAR-T cells against solid tumours whilst limiting toxicities associated with systemic administration of monoclonal antibody-mediated checkpoint inhibition

    Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients

    Longitudinal immune monitoring of patients with resectable esophageal adenocarcinoma treated with Neoadjuvant PD-L1 checkpoint inhibition

    Get PDF
    The analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry holds promise as a platform for immune checkpoint inhibition (ICI) biomarker identification. Our aim was to characterize the systemic immune compartment in resectable esophageal adenocarcinoma patients treated with neoadjuvant ICI therapy. In total, 24 patients treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-L1 (atezolizumab) from the PERFECT study (NCT03087864) were included and 26 patients from a previously published nCRT cohort. Blood samples were collected at baseline, on-treatment, before and after surgery. Response groups for comparison were defined as pathological complete responders (pCR) or patients with pathological residual disease (non-pCR). Based on multicolor flow cytometry of PBMCs, an immunosuppressive phenotype was observed in the non-pCR group of the PERFECT cohort, characterized by a higher percentage of regulatory T cells (Tregs), intermediate monocytes, and a lower percentage of type-2 conventional dendritic cells. A further increase in activated Tregs was observed in non-pCR patients on-treatment. These findings were not associated with a poor response in the nCRT cohort. At baseline, immunosuppressive cytokines were elevated in the non-pCR group of the PERFECT study. The suppressive subsets correlated at baseline with a Wnt/β-Catenin gene expression signature and on-treatment with epithelial-mesenchymal transition and angiogenesis signatures from tumor biopsies. After surgery monocyte activation (CD40), low CD8+Ki67+ T cell rates, and the enrichment of CD206+ monocytes were related to early recurrence. These findings highlight systemic barriers to effective ICI and the need for optimized treatment regimens

    Complement Activation in Arterial and Venous Thrombosis is Mediated by Plasmin

    Get PDF
    Thrombus formation leading to vaso-occlusive events is a major cause of death, and involves complex interactions between coagulation, fibrinolytic and innate immune systems. Leukocyte recruitment is a key step, mediated partly by chemotactic complement activation factors C3a and C5a. However, mechanisms mediating C3a/C5a generation during thrombosis have not been studied. In a murine venous thrombosis model, levels of thrombin–antithrombin complexes poorly correlated with C3a and C5a, excluding a central role for thrombin in C3a/C5a production. However, clotweight strongly correlated with C5a, suggesting processes triggered during thrombosis promote C5a generation. Since thrombosis elicits fibrinolysis,we hypothesized that plasmin activates C5 during thrombosis. In vitro, the catalytic efficiency of plasmin-mediated C5a generation greatly exceeded that of thrombin or factor Xa, but was similar to the recognized complement C5 convertases. Plasmin-activated C5 yielded a functional membrane attack complex (MAC). In an arterial thrombosis model, plasminogen activator administration increased C5a levels. Overall, these findings suggest plasmin bridges thrombosis and the immune response by liberating C5a and inducing MAC assembly. These new insights may lead to the development of strategies to limit thrombus formation and/or enhance resolutionMedicine, Faculty ofNon UBCMedicine, Department ofReviewedFacult

    An ROR1 bi-specific T-cell engager provides effective targeting and cytotoxicity against a range of solid tumors

    Get PDF
    We have developed a humanized bi-specific T-cell engager (BiTE) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), a cell surface antigen present on a range of malignancies and cancer-initiating cells. Focusing initially on pancreatic cancer, we demonstrated that our ROR1 BiTE results in T cell mediated and antigen-specific cytotoxicity against ROR1-expressing pancreatic cancer cell lines in vitro at exceedingly low concentrations (0.1\ua0ng/mL) and low effector to target ratios. Our BiTE prevented engraftment of pancreatic tumor xenografts in murine models and reduced the size of established subcutaneous tumors by at least 3-fold. To validate its wider therapeutic potential, we next demonstrated significant cytotoxicity against ovarian cancer in an in vitro and in vivo setting and T-cell-mediated killing of a range of histologically distinct solid tumor cell lines. Overall, our ROR1 BiTE represents a promising immunotherapy approach, because of its ability to target a broad range of malignancies, many with significant unmet therapeutic needs

    Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients

    Longitudinal immune monitoring of patients with resectable esophageal adenocarcinoma treated with Neoadjuvant PD-L1 checkpoint inhibition

    No full text
    ABSTRACTThe analysis of peripheral blood mononuclear cells (PBMCs) by flow cytometry holds promise as a platform for immune checkpoint inhibition (ICI) biomarker identification. Our aim was to characterize the systemic immune compartment in resectable esophageal adenocarcinoma patients treated with neoadjuvant ICI therapy. In total, 24 patients treated with neoadjuvant chemoradiotherapy (nCRT) and anti-PD-L1 (atezolizumab) from the PERFECT study (NCT03087864) were included and 26 patients from a previously published nCRT cohort. Blood samples were collected at baseline, on-treatment, before and after surgery. Response groups for comparison were defined as pathological complete responders (pCR) or patients with pathological residual disease (non-pCR). Based on multicolor flow cytometry of PBMCs, an immunosuppressive phenotype was observed in the non-pCR group of the PERFECT cohort, characterized by a higher percentage of regulatory T cells (Tregs), intermediate monocytes, and a lower percentage of type-2 conventional dendritic cells. A further increase in activated Tregs was observed in non-pCR patients on-treatment. These findings were not associated with a poor response in the nCRT cohort. At baseline, immunosuppressive cytokines were elevated in the non-pCR group of the PERFECT study. The suppressive subsets correlated at baseline with a Wnt/β-Catenin gene expression signature and on-treatment with epithelial–mesenchymal transition and angiogenesis signatures from tumor biopsies. After surgery monocyte activation (CD40), low CD8+Ki67+ T cell rates, and the enrichment of CD206+ monocytes were related to early recurrence. These findings highlight systemic barriers to effective ICI and the need for optimized treatment regimens

    Image_1_Phenotypic immune characterization of gastric and esophageal adenocarcinomas reveals profound immune suppression in esophageal tumor locations.jpeg

    No full text
    BackgroundTumors in the distal esophagus (EAC), gastro-esophageal junction including cardia (GEJAC), and stomach (GAC) develop in close proximity and show strong similarities on a molecular and cellular level. However, recent clinical data showed that the effectiveness of chemo-immunotherapy is limited to a subset of GEAC patients and that EACs and GEJACs generally benefit less from checkpoint inhibition compared to GACs. As the composition of the tumor immune microenvironment drives response to (immuno)therapy we here performed a detailed immune analysis of a large series of GEACs to facilitate the development of a more individualized immunomodulatory strategy.MethodsExtensive immunophenotyping was performed by 14-color flow cytometry in a prospective study to detail the immune composition of untreated gastro-esophageal cancers (n=104) using fresh tumor biopsies of 35 EACs, 38 GEJACs and 31 GACs. The immune cell composition of GEACs was characterized and correlated with clinicopathologic features such as tumor location, MSI and HER2 status. The spatial immune architecture of a subset of tumors (n=30) was evaluated using multiplex immunohistochemistry (mIHC) which allowed us to determine the tumor infiltration status of CD3+, CD8+, FoxP3+, CD163+ and Ki67+ cells.ResultsImmunophenotyping revealed that the tumor immune microenvironment of GEACs is heterogeneous and that immune suppressive cell populations such as monocytic myeloid-derived suppressor cells (mMDSC) are more abundant in EACs compared to GACs (pDiscussionsThis comprehensive immune phenotype study of a large series of untreated GEACs, identified that tumors with an esophageal tumor location have more immune suppressive features compared to tumors in the gastro-esophageal junction or stomach which might explain the location-specific responses to checkpoint inhibitors in this disease. These findings provide an important rationale for stratification according to tumor location in clinical studies and the development of location-dependent immunomodulatory treatment approaches.</p

    Table_1_Phenotypic immune characterization of gastric and esophageal adenocarcinomas reveals profound immune suppression in esophageal tumor locations.xlsx

    No full text
    BackgroundTumors in the distal esophagus (EAC), gastro-esophageal junction including cardia (GEJAC), and stomach (GAC) develop in close proximity and show strong similarities on a molecular and cellular level. However, recent clinical data showed that the effectiveness of chemo-immunotherapy is limited to a subset of GEAC patients and that EACs and GEJACs generally benefit less from checkpoint inhibition compared to GACs. As the composition of the tumor immune microenvironment drives response to (immuno)therapy we here performed a detailed immune analysis of a large series of GEACs to facilitate the development of a more individualized immunomodulatory strategy.MethodsExtensive immunophenotyping was performed by 14-color flow cytometry in a prospective study to detail the immune composition of untreated gastro-esophageal cancers (n=104) using fresh tumor biopsies of 35 EACs, 38 GEJACs and 31 GACs. The immune cell composition of GEACs was characterized and correlated with clinicopathologic features such as tumor location, MSI and HER2 status. The spatial immune architecture of a subset of tumors (n=30) was evaluated using multiplex immunohistochemistry (mIHC) which allowed us to determine the tumor infiltration status of CD3+, CD8+, FoxP3+, CD163+ and Ki67+ cells.ResultsImmunophenotyping revealed that the tumor immune microenvironment of GEACs is heterogeneous and that immune suppressive cell populations such as monocytic myeloid-derived suppressor cells (mMDSC) are more abundant in EACs compared to GACs (pDiscussionsThis comprehensive immune phenotype study of a large series of untreated GEACs, identified that tumors with an esophageal tumor location have more immune suppressive features compared to tumors in the gastro-esophageal junction or stomach which might explain the location-specific responses to checkpoint inhibitors in this disease. These findings provide an important rationale for stratification according to tumor location in clinical studies and the development of location-dependent immunomodulatory treatment approaches.</p
    corecore