43 research outputs found

    Fault-Tolerant Control Strategy for Neutral-Point-Clamped Three-Level Inverter

    No full text
    A fault-tolerant control technique is discussed for the Neutral-Point-Clamped (NPC) three-level inverter, which ensures that the NPC inverter operates normally even under device failures. A two-level leg is added to the NPC inverter; when the device open circuit fault occurs, the load of this faulty phase is connected to the neutral point of this two-level leg through the bidirectional thyristors. An improved Space Vector Pulse Width Modulation (SVPWM) strategy called “addition and subtraction substitution SVPWM” is proposed to effectively suppress fluctuation in capacitor neutral-point voltages by readjusting the sequence and action time of voltage vectors. The fault-tolerant topology in this paper has the advantages of fewer switching devices and lower circuit costs. Experimental results show that the proposed fault-tolerant system can operate in balance of capacitor neutral-point voltages at full output power and the reliability of the inverter is greatly enhanced

    The Applicability of Traditional Protection Methods to Lines Emanating from VSC-HVDC Interconnectors and a Novel Protection Principle

    No full text
    Voltage source converter (VSC)-based high voltage direct current (VSC-HVDC) interconnectors can realize accurate and fast control of power transmission among AC networks, and provide emergency power support for AC networks. VSC-HVDC interconnectors bring exclusive fault characteristics to AC networks, thus influencing the performance of traditional protections. Since fault characteristics are related to the control schemes of interconnectors, a fault ride-through (FRT) strategy which is applicable to the interconnector operating characteristic of working in four quadrants and capable of eliminating negative-sequence currents under unbalanced fault conditions is proposed first. Then, the additional terms of measured impedances of distance relays caused by fault resistances are derived using a symmetrical component method. Theoretical analysis shows the output currents of interconnectors are controllable after faults, which may cause malfunctions in distance protections installed on lines emanating from interconnectors under the effect of fault resistances. Pilot protection is also inapplicable to lines emanating from interconnectors. Furthermore, a novel pilot protection principle based on the ratio between phase currents and the ratio between negative-sequence currents flowing through both sides is proposed for lines emanating from the interconnectors whose control scheme aims at eliminating negative-sequence currents. The validity of theoretical analysis and the protection principle is verified by PSCAD/EMTDC simulations

    Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review

    No full text
    The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitritedependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the NDAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets

    Genome-wide association study reveals candidate genes for gummy stem blight resistance in cucumber

    No full text
    Gummy stem blight (GSB), caused by Didymella bryoniae, is a serious fungal disease that leads to decline in cucumber yield and quality. The molecular mechanism of GSB resistance in cucumber remains unclear. Here, we investigated the GSB resistance of cucumber core germplasms from four geographic groups at the seedling and adult stages. A total of 9 SNPs related to GSB resistance at the seedling stage and 26 SNPs at the adult stage were identified, of which some are co-localized to previously mapped Quantitative trait loci (QTLs) for GSB resistance (gsb3.2/gsb3.3, gsb5.1, and gsb-s6.2). Based on haplotype analysis and expression levels after inoculation, four candidate genes were identified within the region identified by both Genome-wide association study (GWAS) and previous identified QTL mapping, including Csa3G129470 for gsb3.2/gsb3.3, Csa5G606820 and Csa5G606850 for gsb5.1, and Csa6G079730 for gsb-s6.2. The novel GSB resistant accessions, significant SNPs, and candidate genes facilitate the breeding of GSB resistant cucumber cultivars and provide a novel idea for understanding GSB resistance mechanism in cucumber

    Fine mapping a quantitative trait locus underlying seedling resistance to gummy stem blight using a residual heterozygous lines-derived strategy in cucumber.

    No full text
    Gummy stem blight (GSB), caused by Didymella bryoniae, is one of the most devastating diseases that severely reduces cucumber production. Developing resistant varieties would be an effective strategy to control GSB. Although several GSB-resistant QTLs have been reported, causal genes for GSB resistance have not yet been identified in cucumber. A novel loci gsb3.1 for seedling GSB resistance from the "PI 183967" genotype was previously identified in a 1.7-Mb interval on chromosome 3. In this study, we developed a residual heterozygous line-derived strategy from Recombinant Inbred Lines to perform fine mapping, and with this approach, the gsb3.1 locus was narrowed to a 38 kb interval. There were six predicted genes at the gsb3.1 locus, four of which differed in expression in the GSB-resistant compared to the susceptible lines after fungal inoculation. These candidate genes (Csa3G020050, Csa3G020060, Csa3G020090, and Csa3G020590) within the gsb3.1 locus could be helpful for the genetic study of GSB resistance and marker-assisted selection in cucumber. Phylogenetic analyses indicated that the resistant gsb3.1 allele may uniquely exist in the wild species present in the Indian group, and that nucleotide diversity was significantly reduced in cultivated accessions. Therefore, the gsb3.1 allele could be introgressed into existing commercial cultivars and combined with other resistance QTLs to provide broad-spectrum and robust GSB resistance in cucumber

    Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa

    No full text
    Abstract Background Members of the MtN3/saliva/SWEET gene family are present in various organisms and are highly conserved. Their precise biochemical functions remain unclear, especially in Chinese cabbage. Based on the whole genome sequence, this study aims to identify the MtN3/saliva/SWEETs family members in Chinese cabbage and to analyze their classification, gene structure, chromosome distribution, phylogenetic relationship, expression pattern, and biological functions. Results We identified 34 SWEET genes in Chinese cabbage and analyzed their localization on chromosomes and transmembrane regions of their corresponding proteins. Analysis of a phylogenetic tree indicated that there were at least 17 supposed ancestor genes before the separation in Brassica rapa and Arabidopsis. The expression patterns of these genes in different tissues and flower developmental stages of Chinese cabbage showed that they are mainly involved in reproductive development. The Ka/Ks ratio between paralogous SWEET gene pairs of B. rapa were far less than 1. In our previous study, At2g39060 homologous gene Bra000116 (BraSWEET9, also named BcNS, Brassica Nectary and Stamen) played an important role during flower development in Chinese cabbage. Instantaneous expression experiments in onion epidermal cells showed that the gene encoding this protein is localized to the plasma membrane. A basal nectary split is the phenotype of transgenic plants transformed with the antisense expression vector. Conclusion This study is the first to perform a sequence analysis, structures analysis, physiological and biochemical characteristics analysis of the MtN3/saliva/SWEETs gene in Chinese cabbage and to verify the function of BcNS. A total of 34 SWEET genes were identified and they are distributed among ten chromosomes and one scaffold. The Ka/Ks ratio implies that the duplication genes suffered strong purifying selection for retention. These genes were differentially expressed in different floral organs. The phenotypes of the transgenic plants indicated that BcNs participates in the development of the floral nectary. This study provides a basis for further functional analysis of the MtN3/saliva/SWEETs gene family

    Metformin alleviates benzo[a]pyrene-induced alveolar injury by inhibiting necroptosis and protecting AT2 cells

    No full text
    Exposure to benzo[a]pyrene (B[a]P) has been linked to lung injury and carcinogenesis. Airway epithelial cells express the B[a]P receptor AHR, so B[a]P is considered to mainly target airway epithelial cells, whereas its potential impact on alveolar cells remains inadequately explored. Metformin, a first-line drug for diabetes, has been shown to exert anti-inflammatory and tissue repair-promoting effects under various injurious conditions. Here, we explored the effect of chronic B[a]P exposure on alveolar cells and the impact of metformin on B[a]P-induced lung injury by examining the various parameters including lung histopathology, inflammation, fibrosis, and related signal pathway activation. MLKL knockout (Mlkl-/-) and AT2-lineage tracing mice (SftpcCre-ERT2;LSL-tdTomatoflox+/-) were used to delineate the role of necroptosis in B[a]P-induced alveolar epithelial injury and repair. Mice receiving weekly administration of B[a]P for 6 weeks developed a significant alveolar damaging phenotype associated with pulmonary inflammation, fibrosis, and activation of the necroptotic cell death pathway. These effects were significantly relieved in MLKL null mice. Furthermore, metformin treatment, which were found to promote AMPK phosphorylation and inhibit RIPK3, as well as MLKL phosphorylation, also significantly alleviated B[a]P-induced necroptosis and lung injury phenotype. However, the protective efficacy of metformin was rendered much less effective in Mlkl null mice or by blocking the necroptotic pathway with RIPK3 inhibitor. Our findings unravel a potential protective efficacy of metformin in mitigating the detrimental effects of B[a]P exposure on lung health by inhibiting necroptosis and protecting AT2 cells

    Simultaneous Determination of Reactive Oxygen and Nitrogen Species in Mitochondrial Compartments of Apoptotic HepG2 Cells and PC12 Cells Based On Microchip Electrophoresis–Laser-Induced Fluorescence

    No full text
    Determination of intracellular bioactive species will afford beneficial information related to cell metabolism, signal transduction, cell function, and disease treatment. In this study, the first application of a microchip electrophoresis–laser-induced fluorescence (MCE–LIF) method for concurrent determination of reactive oxygen species (ROS) and reactive nitrogen species (RNS), i.e., superoxide (O<sub>2</sub><sup>–•</sup>) and nitric oxide (NO) in mitochondria, was developed using fluorescent probes 2-chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and 3-amino,4-aminomethyl-2′,7′-difluorescein (DAF-FM), respectively. Potential interference of intracellular dehydroascorbic acid (DHA) and ascorbic acid (AA) for NO detection with DAF-FM was eliminated through oxidation of AA with the addition of ascorbate oxidase, followed by subsequent MCE separation. Fluorescent products of O<sub>2</sub><sup>–•</sup> and NO, DBZTC oxide (DBO), and DAF-FM triazole (DAF-FMT) showed excellent baseline separation within 1 min with a running buffer of 40 mM Tris solution (pH 7.4) and a separating electric field of 500 V/cm. The levels of DBO and DAF-FMT in mitochondria isolated from normal HepG2 cells and PC12 cells were evaluated using this method. Furthermore, the changes of DBO and DAF-FMT levels in mitochondria isolated from apoptotic HepG2 cells and PC12 cells could also be detected. The current approach was proved to be simple, fast, reproducible, and efficient. Measurement of the two species with the method will be beneficial to understand ROS/RNS distinctive functions. In addition, it will provide new insights into the role that both species play in biological systems
    corecore