1,399 research outputs found
Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions
Using a hadron and string cascade model, JPCIAE, the energy and centrality
dependences of charged particle pseudorapidity density in relativistic nuclear
collisions were studied. Within the framework of this model, both the
relativistic experimental data and the PHOBOS and PHENIX
data at =130 GeV could be reproduced fairly well without retuning
the model parameters. The predictions for full RHIC energy collisions
and for collisions at the ALICE energy were given. Participant nucleon
distributions were calculated based on different methods. It was found that the
number of participant nucleons, for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.
Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration
10.1194/jlr.M073684Journal of Lipid Research5891785-179
Noval advance of histone modification in inflammatory skin diseases and related treatment methods
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes
Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury
Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11–deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury
Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures
A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures
- …