618 research outputs found

    Aerosol Comparisons Between Observations and Models: AeroCom and ABC

    Get PDF
    I will represent the AeroCom community to the Atmospheric Brown Cloud (ABC) workshop. I will summarize the activities and results from AeroCom Phase I activities in the past 8 years and introduce the new results and activities in the current AeroCom Phase II. We hope to coordinate some activities with the ABC community to share model output and data access for model evaluations, comparisons, and assessment

    Slice Transformer and Self-supervised Learning for 6DoF Localization in 3D Point Cloud Maps

    Full text link
    Precise localization is critical for autonomous vehicles. We present a self-supervised learning method that employs Transformers for the first time for the task of outdoor localization using LiDAR data. We propose a pre-text task that reorganizes the slices of a 360∘360^\circ LiDAR scan to leverage its axial properties. Our model, called Slice Transformer, employs multi-head attention while systematically processing the slices. To the best of our knowledge, this is the first instance of leveraging multi-head attention for outdoor point clouds. We additionally introduce the Perth-WA dataset, which provides a large-scale LiDAR map of Perth city in Western Australia, covering ∼\sim4km2^2 area. Localization annotations are provided for Perth-WA. The proposed localization method is thoroughly evaluated on Perth-WA and Appollo-SouthBay datasets. We also establish the efficacy of our self-supervised learning approach for the common downstream task of object classification using ModelNet40 and ScanNN datasets. The code and Perth-WA data will be publicly released.Comment: Accepted in IEEE International Conference on Robotics and Automation (ICRA), 202

    Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Get PDF
    Owen Im1, Jian Li2, Mian Wang2, Lijie Grace Zhang2,3, Michael Keidar2,31Department of Biomedical Engineering, Duke University, Durham, NC; 2Department of Mechanical and Aerospace Engineering, 3Institute for Biomedical Engineering and Institute for Nanotechnology, The George Washington University, Washington, DC, USABackground: Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels.Methods: Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration.Results: Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment.Conclusion: This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration.Keywords: nanomaterials, single-walled carbon nanotube, nanocrystalline hydroxyapatite, chitosan, bone regeneration, biomimeti

    Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies

    Get PDF
    The aim of this study was to provide a single site resource for investigators, clinicians, and others seeking preclinical, animal, and human investigational studies concerning the postsurgical, anti-adhesion barrier Seprafilmâ„¢ (Genzyme Corporation, Cambridge, MA). All published preclinical, animal, human extra-abdominal research as of July 2011 have been summarized and included in this document. Searches of Medline and EMBASE Drugs and Pharmaceuticals databases were conducted for original preclinical, animal, and human extra-abdominal studies involving Seprafilm. Preclinical, animal, and extra-abdominal human investigational studies are the study selection for this manuscript. Intraabdominal use is discussed in the accompanying manuscript. Data extraction includes systematic manuscript review. Summary of preclinical, animal, and extra-abdominal human investigational use of Seprafilm by surgical discipline were gathered for data synthesis. The clinical use of Seprafilm, which was approved by the FDA for intra-abdominal procedures, is supported by preclinical and animal studies relating to general surgical and obstetrical/gynecological applications. Findings from preclinical, animal, and human investigational studies at other sites throughout the body raises the potential for additional human clinical trials to assess efficacy and safety following surgical procedures at non-abdominal locations

    Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.

    Get PDF
    Cryopreservation is the only established method for long-term preservation of cells and cellular material. This technique involves preservation of cells and cellular components in the presence of cryoprotective agents (CPAs) at liquid nitrogen temperatures (−196 °C). The organic solvent dimethyl sulfoxide (Me2SO) is one of the most commonly utilized CPAs and has been used with various levels of success depending on the type of cells. In recent years, to improve cryogenic outcomes, the non-reducing disaccharide trehalose has been used as an additive to Me2SO-based freezing solutions. Trehalose is a naturally occurring non-toxic compound found in bacteria, fungi, plants, and invertebrates which has been shown to provide cellular protection during water-limited states. The mechanism by which trehalose improves cryopreservation outcomes remains not fully understood. Raman microspectroscopy is a powerful tool to provide valuable insight into the nature of interactions among water, trehalose, and Me2SO during cryopreservation. We found that the addition of trehalose to Me2SO based CPA solutions dramatically reduces the area per ice crystals while increasing the number of ice crystals formed when cooled to −40 or −80 °C. Differences in ice-formation patterns were found to have a direct impact on cellular viability. Despite the osmotic stress caused by addition of 100 mM trehalose, improvement in cellular viability was observed. However, the substantial increase in osmotic pressure caused by trehalose concentrations above 100 mM may offset the beneficial effects of changing the morphology of the ice crystals achieved by addition of this sugar

    Cold atmospheric plasma for selectively ablating metastatic breast cancer cells

    Get PDF
    Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy

    Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Get PDF
    Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG) (EC 3.2.1.3) from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose) formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations
    • …
    corecore