48 research outputs found

    Evaluation of fluoroquinolone resistance in clinical avian pathogenic Escherichia coli isolates from Flanders (Belgium)

    Get PDF
    Fluoroquinolones are frequently used antimicrobials for the treatment of avian pathogenic Escherichia coli (APEC) infections. However, rapid development and selection of resistance to this class of antimicrobial drugs is a significant problem. The aim of this study was to investigate the occurrence and mechanisms of antimicrobial resistance against enrofloxacin (ENRO) in APEC strains in Flanders, Belgium. One hundred and twenty-five APEC strains from broilers with clinical colibacillosis were collected in Flanders from November 2017 to June 2018. The minimum inhibitory concentration (MIC) of all strains and the mutant prevention concentration (MPC) of a sample of sensitive isolates were determined using a commercial gradient strip test and via the agar dilution method, respectively. Non-wild type (NWT) isolates were further characterized using polymerase chain reaction (PCR), gel electrophoresis and gene sequencing. Forty percent of the APEC strains were NWT according to the epidemiological cut-off (ECOFF) measure (MIC > 0.125 μg/mL). With respect to clinical breakpoints, 21% were clinically intermediate (0.5 ≤ MIC ≤ 1 μg/mL) and 10% were clinically resistant (MIC ≥ 2). The MPC values of the tested strains ranged from 0.064 to 1 μg/mL, resulting in MPC/MIC ratios varying from 4 to 32. The majority (92%) of the NWT strains carried one or two mutations in gyrA. Less than a quarter (22%) manifested amino acid substitutions in the topoisomerase IV parC subunit. Only three of the NWT strains carried a mutation in parE. Plasmid mediated quinolone resistance (PMQR) associated genes were detected in 18% of the NWT strains. In contrast to the relatively large number of NWT strains, only a small percentage of APEC isolates was considered clinically resistant. The most common MPC value for sensitive strains was 0.125 μg/mL. Some isolates showed higher values, producing wide mutant selection windows (MSW). Chromosomal mutations in DNA gyrase and topoisomerase IV were confirmed as the main source of decreased antimicrobial fluoroquinolone susceptibility, de-emphasizing the role of PMQR mechanisms

    Fluoroquinolone resistance in clinical avian pathogenic Escherichia coli isolates from Flanders (Belgium)

    Get PDF
    Fluoroquinolones are frequently used antimicrobials for the treatment of avian pathogenic Escherichia coli (APEC) infections. However, rapid development and selection of resistance to this class of antimicrobial drugs is a significant problem. The aim of this study was to investigate the occurrence and mechanisms of antimicrobial resistance against enrofloxacin (ENRO) in APEC strains in Flanders, Belgium. One hundred and twenty-five APEC strains from broilers with clinical colibacillosis were collected in Flanders from November 2017 to June 2018. The minimum inhibitory concentration (MIC) of all strains and the mutant prevention concentration (MPC) of a sample of sensitive isolates were determined using a commercial gradient strip test and via the agar dilution method, respectively. Non-wild type (NWT) isolates were further characterized using polymerase chain reaction (PCR), gel electrophoresis and gene sequencing. Forty percent of the APEC strains were NWT according to the epidemiological cut-off (ECOFF) measure (MIC > 0.125 μg/mL). With respect to clinical breakpoints, 21% were clinically intermediate (0.5 ≤ MIC ≤ 1 μg/mL) and 10% were clinically resistant (MIC ≥ 2). The MPC values of the tested strains ranged from 0.064 to 1 μg/mL, resulting in MPC/MIC ratios varying from 4 to 32. The majority (92%) of the NWT strains carried one or two mutations in gyrA. Less than a quarter (22%) manifested amino acid substitutions in the topoisomerase IV parC subunit. Only three of the NWT strains carried a mutation in parE. Plasmid mediated quinolone resistance (PMQR) associated genes were detected in 18% of the NWT strains. In contrast to the relatively large number of NWT strains, only a small percentage of APEC isolates was considered clinically resistant. The most common MPC value for sensitive strains was 0.125 μg/mL. Some isolates showed higher values, producing wide mutant selection windows (MSW). Chromosomal mutations in DNA gyrase and topoisomerase IV were confirmed as the main source of decreased antimicrobial fluoroquinolone susceptibility, de-emphasizing the role of PMQR mechanisms

    Agreement of quantitative and qualitative antimicrobial susceptibility testing methodologies : the case of enrofloxacin and avian pathogenic escherichia coli

    Get PDF
    Avian pathogenicEscherichia coli(APEC) is the causal agent of colibacillosis, one of the most common bacterial infections in the poultry sector. Antimicrobial susceptibility testing (AST) is essential for rational and prudent antimicrobial therapy. Subsequently, uniformity in test results from the various testing methodologies used in diagnostic laboratories is pivotal. The aim of this study was therefore to evaluate the agreement between different AST methods in determining fluoroquinolone resistance in APEC. Twenty APEC isolates were selected and subjected to four different susceptibility tests: the quantitative microbroth dilution, agar dilution and gradient strip tests, and the qualitative disk diffusion method. The experiments were performed in triplicate. Categorical agreement, essential agreement and different errors were assessed. Moreover, agreement was also evaluated by calculating intraclass correlation coefficients (ICCs) for the quantitative tests and determining the Pearson correlation coefficients for the agreement between the disk diffusion method and the quantitative tests. Categorical agreement and essential agreement when compared with the microbroth technique ranged from 85-95% and 85-100%, respectively. No very major errors (false susceptible) and only one major error (false resistant) and minor errors (results involving an intermediary category) were detected. The calculated ICC values of the three quantitative tests fluctuated around 0.970 (range 0.940-0.988). There was a high negative correlation between the disk diffusion method and the other tests (correlation coefficients ranging from -0.979 to -0.940), indicating a clear inverse relationship between the minimum inhibitory concentration value and the zone diameter of growth inhibition. In conclusion, the overall agreement between the four different testing methodologies was very high. These results confirm the reliability of the disk diffusion and gradient strip test methods as substantiated alternatives, next to the gold standard agar and microbroth dilution, for fluoroquinolone susceptibility testing of APEC isolates

    Effect of antimicrobial consumption and production type on antibacterial resistance in the bovine respiratory and digestive tract

    Get PDF
    The aim of this study was to investigate the relationship between antimicrobial use and the occurrence of antimicrobial resistance in the digestive and respiratory tract in three different production systems of food producing animals. A longitudinal study was set up in 25 Belgian bovine herds (10 dairy, 10 beef, and 5 veal herds) for a 2 year monitoring of antimicrobial susceptibilities in E. coli and Pasteurellaceae retrieved from the rectum and the nasal cavity, respectively. During the first year of observation, the antimicrobial use was prospectively recorded on 15 of these farms (5 of each production type) and transformed into the treatment incidences according to the (animal) defined daily dose (TIADD) and (actually) used daily dose (TIUDD). Antimicrobial resistance rates of 4,174 E. coli (all herds) and 474 Pasteurellaceae (beef and veal herds only) isolates for 12 antimicrobial agents demonstrated large differences between intensively reared veal calves (abundant and inconstant) and more extensively reared dairy and beef cattle (sparse and relatively stable). Using linear mixed effect models, a strong relation was found between antimicrobial treatment incidences and resistance profiles of 1,639 E. coli strains (p< 0.0001) and 309 Pasteurellaceae (p <= 0.012). These results indicate that a high antimicrobial selection pressure, here found to be represented by low dosages of oral prophylactic and therapeutic group medication, converts not only the commensal microbiota from the digestive tract but also the opportunistic pathogenic bacteria in the respiratory tract into reservoirs of multi-resistance
    corecore