3,058 research outputs found

    Effects of Qigong on Depression: A Systemic Review

    Get PDF
    Physical exercises and relaxation have been found to be beneficial for depression. However, there is little evidence on the use of Qigong, a mind-body practice integrating gentle exercise and relaxation, in the management of depression. The aim of this paper is to evaluate the effects of Qigong on depression. The paper examined clinical trials measuring the effect of Qigong on depression within six large-scale medical research databases (PubMed, Medline, ProQuest, Science Direct, EMBASE, and PsycInfo) till October 2011. Key words “Qigong,” “depression,” and “mood” were used. Ten studies were identified as original randomized controlled trial (RCT) studies investigating the effect of Qigong on depression as primary (n = 2) or secondary outcome (n = 8). Four studies reported positive results of the Qigong treatment on depression; two reported that Qigong effect on depression was as effective as physical exercise. One study reported that Qigong was comparable to a conventional rehabilitation program, but the remaining three studies found no benefits of Qigong on depression. While the evidence suggests the potential effects of Qigong in the treatment of depression, the review of the literature shows inconclusive results. Further research using rigorous study designs is necessary to investigate the effectiveness of Qigong in depression

    Targeting of MKRNI for identifying cancer treatment agents

    Get PDF
    The molecular chaperone Hsp90 binds specifically to hTERT and is required for assembly of active telomerase activity. We show that disruption of Hsp90 function gy geldanamycin efficient ubiquitination and proteasome-mediated degradation of hTERT

    Anti-obesity effects of Yerba Mate (Ilex Paraguariensis): a randomized, double-blind, placebo-controlled clinical trial

    Get PDF
    Dietary assessment parameters of the Yerba Mate and placebo groups measured at 0, 6 and 12 weeks. (DOC 37.5 kb

    A Study on the Flora of 15 Islands in the Western Sea of Jeollanamdo Province, Korea

    Get PDF
    AbstractThis study aims to investigate the flora of 15 islands in Yeonggwang, Shinan, and Mokpo of the Jeollanamdo province and the distribution of major plants in order to use the results as fundamental data for studies on plants in islands. Field surveys were performed 25 times from 2004 to 2010 to investigate the flora in these regions. A total of 793 taxa including 123 families, 421 genera, 695 species, 2 subspeices, 88 varieties, and 8 forms was found. Korean endemic plants including Hepatica insularis and Galium koreanum were 6 taxa. 25 taxa of rare plants including Trachomitum lancifolium, Daphne kiusiana, and Centranthera cochinchinensis var. lutea were confirmed 120 taxa floristic special plant species were confirmed; 11 taxa of the fifth class, four taxa of the fourth class, 28 taxa of the third class. 78 taxa of naturalized plants were confirmed

    Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT

    Get PDF
    Telomere homeostasis is regulated by telomerase and a collection of associatedproteins. Telomerase is, in turn, regulated by post-translational modifications of the rate-limiting catalytic subunit hTERT. Here we show that disruption of Hsp90 by geldanamycin promotes efficient ubiquitination and proteasome-mediated degradation of hTERT. Furthermore, we have used the yeast two-hybrid method to identify a novel RING finger gene (MKRN1) encoding an E3 ligase that mediates ubiquitination of hTERT. Overexpression of MKRN1 in telomerase-positive cells promotes the degradation of hTERT and decreases telomerase activity and subsequently telomere length. Our data suggest that MKRN1 plays an important role in modulating telomere length homeostasis through a dynamic balance involving hTERT protein stability

    Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation

    Get PDF
    The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes

    Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial.

    Get PDF
    Background:For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods:We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48) or a control group (n = 22). We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results:The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0%) patients achieved the primary goal, as compared with 16 (72.7%) in the control group (P = 0.430). The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087), but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851). However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193). The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363) nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569). Conclusion:Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy

    MDR-1 gene expression is a minor factor in determining the multidrug resistance phenotype of MCF7/ADR and KB-V1 cells

    Get PDF
    AbstractThe relevance of MDR-1 gene expression to the multidrug resistance phenotype was investigated. Drug-resistant cells, KB-V1 and MCF7/ADR, constantly expressed mRNA of the MDR-1 gene and were more resistant to vinblastine and adriamycin than drug-sensitive cells, KB-3–1 and MCF7. The drug efflux rate of KB-V1 was the same as KB-3–1 although the MDR-1 gene was expressed in only the resistant cell. The higher intracellular drug concentration of KB-3–1 than KB-V1 was due to the large drug influx. In the case of MCF7 and MCF7/ADR, the influx and efflux of the drug had nearly the same pattern and drug efflux was not affected by verapamil. The amount of ATP, cofactor of drug pumping activity of P-glycoprotein, was not changed by the resistance. These observations suggested that drug efflux mediated by MDR-1 gene expression was not a major determining factor of drug resistance in the present cell systems, and that the drug resistance could be derived from the change in drug uptake and other mechanisms

    Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.

    Get PDF
    BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP

    miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Get PDF
    Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)
    corecore