2,463 research outputs found

    Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders

    Get PDF
    The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over timescales of a few seconds was studied using a Gleeble 3500 thermomechanical simulator, finite element based numerical model and electron microscopy. The study found that the microstructural changes were governed by the characteristic temperatures of the alloy. At a temperature below the γ' solvus, the powders maintained dendritic structures. Above the γ' solvus temperature but in the solid-state, rapid grain spheroidisation and coarsening occurred, although the fine-scale microstructures were largely retained. Once the incipient melting temperature of the alloy was exceeded, microstructural change was rapid, and when the temperature was increased into the solid + liquid state, the powder compact partially melted and then re-solidified with no trace of the original structures, despite the fast timescales. The study reveals the relationship between short, severe thermal excursions and microstructural evolution in powder processed components, and gives guidance on the upper limit of temperature and time for powder-based processes if desirable fine-scale features of powders are to be preserved

    Performance of 3D printed porous polyetheretherketone composite scaffolds combined with nano-hydroxyapatite/carbon fiber in bone tissue engineering: a biological evaluation

    Get PDF
    Polyetheretherketone (PEEK) has been one of the most promising materials in bone tissue engineering in recent years, with characteristics such as biosafety, corrosion resistance, and wear resistance. However, the weak bioactivity of PEEK leads to its poor integration with bone tissues, restricting its application in biomedical fields. This research effectively fabricated composite porous scaffolds using a combination of PEEK, nano-hydroxyapatite (nHA), and carbon fiber (CF) by the process of fused deposition molding (FDM). The experimental study aimed to assess the impact of varying concentrations of nHA and CF on the biological performance of scaffolds. The incorporation of 10% CF has been shown to enhance the overall mechanical characteristics of composite PEEK scaffolds, including increased tensile strength and improved mechanical strength. Additionally, the addition of 20% nHA resulted in a significant increase in the surface roughness of the scaffolds. The high hydrophilicity of the PEEK composite scaffolds facilitated the in vitro inoculation of MC3T3-E1 cells. The findings of the study demonstrated that the inclusion of 20% nHA and 10% CF in the scaffolds resulted in improved cell attachment and proliferation compared to other scaffolds. This suggests that the incorporation of 20% nHA and 10% CF positively influenced the properties of the scaffolds, potentially facilitating bone regeneration. In vitro biocompatibility experiments showed that PEEK composite scaffolds have good biosafety. The investigation on osteoblast differentiation revealed that the intensity of calcium nodule staining intensified, along with an increase in the expression of osteoblast transcription factors and alkaline phosphatase activities. These findings suggest that scaffolds containing 20% nHA and 10% CF have favorable properties for bone induction. Hence, the integration of porous PEEK composite scaffolds with nHA and CF presents a promising avenue for the restoration of bone defects using materials in the field of bone tissue engineering

    UPLC-MS/MS method for Icariin and metabolites in whole blood of C57 mice: development, validation, and pharmacokinetics study

    Get PDF
    Icariin, a Chinese medicinal herb with significant effects on Alzheimer’s disease, lacks pharmacokinetic data in mice. To address this, a UPLC-MS/MS method was developed and validated for quantifying Icariin and its metabolites, Icariside I and Icariside II, in the whole blood of mice. The method processed micro-whole blood from serial collections of the same C57 mouse, with well-fitted linearity (0.25–800 ng mL−1) and intra- and inter-day precision and accuracy within 15%. Short-time and autosampler stability were verified, with acceptable extraction recoveries and matrix effects over 74.55%. After intravenous administration (15 mg kg−1) of Icariin in C57 mice, Icariside I and Icariside II were detected within 2 min. However, after the intragastric administration (30, 90, and 150 mg kg−1) of Icariin in C57 mice, Icariin and Icariside I were not detected, and Icariin was rapidly converted into Icariside II. Furthermore, the Cmax and AUC0-t of three doses (30, 90, and 150 mg kg-1) of Icariside II increased as the dose increased. In conclusion, this method improves the traditional method of collecting only one blood sample from each mouse, detecting Icariin and its metabolites in the whole blood of mice, especially for serial collection of micro-whole blood

    Adjustment of the GRACE score by HemoglobinA1c enables a more accurate prediction of long-term major adverse cardiac events in acute coronary syndrome without diabetes undergoing percutaneous coronary intervention

    Get PDF
    Background: The Global Registry of Acute Coronary Events (GRACE) risk score is widely recommended for risk assessment in patients with acute coronary syndrome (ACS). Chronic hyperglycemia [hemoglobinA1c (HbA1c)] can independently predict major adverse cardiac events (MACEs) in patients with ACS. We investigated whether the prediction of MACEs with the GRACE score could be improved with the addition of HbA1c content in ACS patients without diabetes mellitus (DM) undergoing percutaneous coronary intervention (PCI). Methods: We enrolled 549 ACS patients without DM who underwent PCI. The GRACE score and HbA1c content were determined on admission. Correlation was analyzed by Spearman's rank correlation. Cumulative MACE curve was calculated using the Kaplan-Meier method. Multivariate Cox regression was used to identify predictors of MACEs. Additionally, the predictive value of HbA1c content alone and combined with GRACE score was estimated by the area under the receiver-operating characteristic curve (AUC), continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results: During a median of 42.3 months (interquartile range 39.3-44.2 months), 16 (2.9 %) were lost to follow-up, and patients experienced 69 (12.9 %) MACEs: 51 (9.6 %) all-cause deaths and 18 (3.4 %) nonfatal myocardial infarction cases. The GRACE score was positively associated with HbA1c content. Multivariate Cox analysis showed that both GRACE score and HbA1c content were independent predictors of MACEs (hazard ratio 1.030; 95 % CI 1.020-1.040; p < 0.001; 3.530; 95 % CI 1.927-6.466; p < 0.001, respectively). Furthermore, Kaplan-Meier analysis demonstrated increased risk of MACEs with increasing HbA1c content (log-rank 33.906, p < 0.001). Adjustment of the GRACE risk estimate by HbA1c improved the predictive value of the GRACE score [increase in AUC from 0.75 for the GRACE score to 0.80 for the GRACE score plus HbA1c, p = 0.012; IDI = 0.055, p < 0.001; NRI (> 0) = 0.70, p < 0.001]. Conclusions: HbA1c content is positively associated with GRACE risk score and their combination further improved the risk stratification for ACS patients without DM undergoing PCI.National Natural Science Foundation of China [91339116, 81400181]; National Natural Science Fund for Distinguished Young Scholars of China [81025002]; National Basic Research Program of China ("973 Project") [2012CB517804]SCI(E)[email protected]

    Acupuncture for menstruation-related migraine prophylaxis:A multicenter randomized controlled trial

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate the efficacy of acupuncture, an alternative medicine therapy, as a preventive treatment for menstruation-related migraine (MRM). PATIENTS AND METHODS: This was a prospective, multicenter, double-dummy, participant-blinded, randomized controlled clinical trial conducted in China between 1 April 2013, and 30 April 2014. The participants were enrolled from four study centers and randomized to into either the acupuncture group, which received 24 sessions of acupuncture at traditional acupoints plus placebo, or the medication group, which received sham acupuncture plus naproxen. The primary endpoint was change from the baseline average number of migraine days per perimenstrual period over cycles 1−3. The secondary endpoints included changes from the baseline average number of migraine days outside the perimenstrual period, mean number of migraine hours during and outside the perimenstrual period, mean visual analog scale score during and outside the perimenstrual period, ≥50% migraine responder rate, and the proportion of participants who used acute pain medication over cycles 1−3 and 4−6. RESULTS: A total of 172 women with MRM were enrolled; 170 in the intention-to-treat analyses. Our primary outcome reported a significant between-group difference that favored the acupuncture group (95% CI, 0.17–0.50; P < 0.001), with the average reduction of migraine days per perimenstrual period from the baseline was 0.94 (95% CI, 0.82–1.07) in the acupuncture group and 0.61 (95% CI, 0.50–0.71) in the medication group over cycles 1−3. CONCLUSION: This study showed that compared to medication, acupuncture reduces the number of migraine days experienced by patients with MRM. For patients who received the acupuncture treatment over three cycles, the preventive effect of the therapy was sustained for six cycles. CLINICAL TRIAL REGISTRATION: [https://www.isrctn.com/ISRCTN57133712], identifier [ISRCTN15663606]

    Modulation of visceral pain by brain nuclei and brain circuits and the role of acupuncture: a narrative review

    Get PDF
    Visceral pain is a complex and heterogeneous pain condition that is often associated with pain-related negative emotional states, including anxiety and depression, and can exert serious effects on a patient’s physical and mental health. According to modeling stimulation protocols, the current animal models of visceral pain mainly include the mechanical dilatation model, the ischemic model, and the inflammatory model. Acupuncture can exert analgesic effects by integrating and interacting input signals from acupuncture points and the sites of pain in the central nervous system. The brain nuclei involved in regulating visceral pain mainly include the nucleus of the solitary tract, parabrachial nucleus (PBN), locus coeruleus (LC), rostral ventromedial medulla (RVM), anterior cingulate cortex (ACC), paraventricular nucleus (PVN), and the amygdala. The neural circuits involved are PBN-amygdala, LC-RVM, amygdala-insula, ACC-amygdala, claustrum-ACC, bed nucleus of the stria terminalis-PVN and the PVN-ventral lateral septum circuit. Signals generated by acupuncture can modulate the central structures and interconnected neural circuits of multiple brain regions, including the medulla oblongata, cerebral cortex, thalamus, and hypothalamus. This analgesic process also involves the participation of various neurotransmitters and/or receptors, such as 5-hydroxytryptamine, glutamate, and enkephalin. In addition, acupuncture can regulate visceral pain by influencing functional connections between different brain regions and regulating glucose metabolism. However, there are still some limitations in the research efforts focusing on the specific brain mechanisms associated with the effects of acupuncture on the alleviation of visceral pain. Further animal experiments and clinical studies are now needed to improve our understanding of this area

    First order transition in trigonal structure CaMn2P2{\textbf{Ca}}{\textbf{Mn}}_{2}{\textbf{P}}_{2}

    Full text link
    We report structural and physical properties of the single crystalline CaMn2P2{\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2}. The X-ray diffraction(XRD) results show that CaMn2P2{\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2} adopts the trigonal CaAl2Si2{\mathrm{Ca}}{\mathrm{Al}}_{2}{\mathrm{Si}}_{2}-type structure. Temperature dependent electrical resistivity ρ(T)\rho(T) measurements indicate an insulating ground state for CaMn2P2{\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2} with activation energies of 40 meV and 0.64 meV for two distinct regions, respectively. Magnetization measurements show no apparent magnetic phase transition under 400 K. Different from other AMn2Pn2{\mathrm{A}}{\mathrm{Mn}}_{2}{\mathrm{Pn}}_{2} (A = Ca, Sr, and Ba, and Pn = P, As, and Sb) compounds with the same structure, heat capacity Cp(T)C_{\mathrm{p}}(T) and ρ(T)\rho(T) reveal that CaMn2P2{\mathrm{Ca}}{\mathrm{Mn}}_{2}{\mathrm{P}}_{2} has a first-order transition at TT = 69.5 K and the transition temperature shifts to high temperature upon increasing pressure. The emergence of plenty of new Raman modes below the transition, clearly suggests a change in symmetry accompanying the transition. The combination of the structural, transport, thermal and magnetic measurements, points to an unusual origin of the transition.Comment: 6 pages, 6 figures. Accepted by Europhysics Letter

    Electrospun Contrast Agent-Loaded Fibers for Colon-Targeted MRI

    Get PDF
    Magnetic resonance imaging is a diagnostic tool used for detecting abnormal organs and tissues, often using Gd(III) complexes as contrast-enhancing agents. In this work, core–shell polymer fibers have been prepared using coaxial electrospinning, with the intent of delivering gadolinium (III) diethylenetriaminepentaacetate hydrate (Gd(DTPA)) selectively to the colon. The fibers comprise a poly(ethylene oxide) (PEO) core loaded with Gd(DTPA), and a Eudragit S100 shell. They are homogeneous, with distinct core–shell phases. The components in the fibers are dispersed in an amorphous fashion. The proton relaxivities of Gd(DTPA) are preserved after electrospinning. To permit easy visualization of the release of the active ingredient from the fibers, analogous materials are prepared loaded with the dye rhodamine B. Very little release is seen in a pH 1.0 buffer, while sustained release is seen at pH 7.4. The fibers thus have the potential to selectively deliver Gd(DTPA) to the colon. Mucoadhesion studies reveal there are strong adhesive forces between porcine colon mucosa and PEO from the core, and the dye-loaded fibers can be successfully used to image the porcine colon wall. The electrospun core–shell fibers prepared in this work can thus be developed as advanced functional materials for effective imaging of colonic abnormalities

    Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness

    Get PDF
    While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allele frequencies that may have implications for their use in assessing relatedness and evaluation of genetic diversity. We compared analyses based on 89 SSRs (primarily dinucleotide repeats) to analyses based on 847 SNPs in individuals from the same 259 inbred maize lines, which had been chosen to represent the diversity available among current and historic lines used in breeding. The SSRs performed better at clustering germplasm into populations than did a set of 847 SNPs or 554 SNP haplotypes, and SSRs provided more resolution in measuring genetic distance based on allele-sharing. Except for closely related pairs of individuals, measures of distance based on SSRs were only weakly correlated with measures of distance based on SNPs. Our results suggest that 1) large numbers of SNP loci will be required to replace highly polymorphic SSRs in studies of diversity and relatedness and 2) relatedness among highly-diverged maize lines is difficult to measure accurately regardless of the marker system

    Prolactin signaling and Stat5: going their own separate ways?

    Get PDF
    Miyoshi et al. compared the role of the prolactin receptor (PrlR) and its downstream mediator, the signal transducer and activator of transcription 5 (Stat5), in mammary epithelial cells in vivo by studying PrlR(-/-) and Stat5ab(-/-) mouse mammary epithelial transplants during pregnancy. At first glance, the two mutant epithelia appear to have similar defects in the differentiation of the alveolar epithelium. However, a closer examination by Miyoshi et al. revealed defects in the epithelial architecture of the smallest ducts of Stat5ab(-/-) transplants not apparent in the PrlR(-/-) transplants, suggesting that Stat5 is more than a simple mediator of PrlR action
    corecore