1,032 research outputs found
Topological Morita Equivalences Induced by Ideals Generated by Dense Idempotents
AbstractGiven two complete right linearly topologized rings (R,Ï) and (S,Ï), and a bimoduleRBSendowed with a complete topology ÎČ, in such a way that (BS,ÎČ)âCLT-(S,Ï) and there be a continuous ring homomorphism (R,Ï)âCEnduS(B,ÎČ), we define a functor ââÌRB:CLT-(R,Ï)âCLT-(S,Ï) which is left adjoint to the functor CHomuS((B,ÎČ),â):CLT-(S,Ï)âCLT-(R,Ï). Then we consider the particular case in which (S,Ï)=eRewith its induced topology, whereeis a dense idempotent ofR(that is,ReRis dense in (R,Ï)). Under these hypotheses we show that the pair of functors ââÌRRe:CLT-(R,Ï)âCLT-(S,Ï) and ââÌSeR:CLT-(S,Ï)âCLT-(R,Ï) is an equivalence of categories. As an application of this result, we re-obtain a theorem of Xu, Shum, and Turner-Smith on similarities between infinite matrix subrings
The Local Galaxy Density and the Arm Class of Spiral Galaxies
We have examined the effect of the environmental density on the arm
classification of an extensive sample of spiral galaxies included in the Nearby
Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm
class of a galaxy on other factors, such as its blue absolute magnitude and its
disk-to-total mass ratio, inferred in the literature either from the gradient
of a good galaxy rotation curve or from a photometric mass decomposition
method. We have found that the arm class is strongly related to the absolute
magnitude in the mid-type spirals (in the sense that grand design galaxies are,
on average, more luminous than flocculent objects), whilst this relation is
considerably weaker in the early and late types. In general the influence of
the local density on the arm structure appears to be much weaker than that of
the absolute magnitude. The local density acts essentially in strengthening the
arm class--absolute magnitude relation for the mid types, whereas no
environmental density effects are observed in the early and late types. Using
the most recent estimates of the disk-to-total mass ratio, we do not confirm
this ratio to be a significant factor which affects the arm class;
nevertheless, owing to poor statistics and large uncertanties, the issue
remains open. Neither a local density effect nor an unambiguous bar effect on
the disk-to-total mass ratio is detectable; the latter finding may challenge
some theoretical viewpoints on the formation of bar structures.Comment: 15 pages, Latex, SISSA 102/93/A openbib.sty and 4 POSTSCRIPT figures
appende
Congruences of lines in , quadratic normality, and completely exceptional Monge-Amp\`ere equations
The existence is proved of two new families of locally Cohen-Macaulay sextic
threefolds in , which are not quadratically normal. These
threefolds arise naturally in the realm of first order congruences of lines as
focal loci and in the study of the completely exceptional Monge-Amp\`ere
equations. One of these families comes from a smooth congruence of multidegree
which is a smooth Fano fourfold of index two and genus 9.Comment: 16 page
The Mass Function of Nearby Galaxy Clusters
We present the distribution of virial masses for nearby galaxy clusters, as
obtained from a data-set of 75 clusters, each having at least 20 galaxy members
with measured redshifts within 1 Abell radius. After having accounted for
problems of incompleteness of the data-set, we fitted a power-law to the
cluster mass distribution.Comment: 10 pages (2 figures not included, available upon request), LATEX,
Ref.SISSA 54/93/
Evidence of a new low field cross-over in the vortex critical velocity of type-II superconducting thin films
We measure current-voltage characteristics as function of magnetic field and
temperature in Nb strips of different thickness and width. The instability
voltage of the flux flow state related to the vortex critical velocity v* is
studied and compared with the Larkin-Ovchinnikov theory. Beside the usual
power-law dependence v* ~ B^-1/2, in the low field range a new cross-over
field, Bcr1, is observed below which v* decreases by further lowering the
external magnetic field B. We ascribe this unexpected cross-over to vortex
channeling due to a fan-like penetration of the applied magnetic field as
confirmed by magneto-optic imaging. The observation of Bcr1 becomes a direct
evidence of a general feature in type-II superconducting films at low fields,
that is a channel-like vortex motion induced by the inhomogeneous magnetic
state caused by the relatively strong pinning
Structures in Galaxy Clusters
The analysis of the presence of substructures in 16 well-sampled clusters of
galaxies suggests a stimulating hypothesis: Clusters could be classified as
unimodal or bimodal, on the basis of to the sub-clump distribution in the {\em
3-D} space of positions and velocities. The dynamic study of these clusters
shows that their fundamental characteristics, in particular the virial masses,
are not severely biased by the presence of subclustering if the system
considered is bound.Comment: (16 pages in LATEX, 4 tables in LATEX are at the end of the file, the
figures not included are available upon request), REF SISSA 158/93/
Nanosized patterns as reference structures for macroscopic transport properties and vortex phases in YBCO films
This paper studies the striking correlation between nanosized structural
patterns in YBCO films and macroscopic transport current. A nanosized network
of parallel Josephson junctions laced by insulating dislocations is almost
mimicking the grain boundary structural network. It contributes to the
macroscopic properties and accounts for the strong intergranular pinning across
the film in the intermediate temperature range. The correlation between the two
networks enables to find out an outstanding scaling law in the (Jc,B) plane and
to determine meaningful parameters concerning the matching between the vortex
lattice and the intergranular defect lattice. Two asymptotic behaviors of the
pinning force below the flux flow regime are checked: the corresponding vortex
phases are clearly individuated.Comment: 4 pages, 4 figure
A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam
The paper reports on a high precision equipment designed to modify over
3-dimensions (3D) by means of high-energy gold ions the local properties of
thin and thick films. A target-moving system aimed at creating patterns across
the volume is driven by an x-y writing protocol that allows one to modify beam
sensitive samples over micrometer-size regions of whatever shape. The apparatus
has a mechanical resolution of 15 nm. The issue of the local fluence
measurement has been particularly addressed. The setup has been checked by
means of different geometries patterned on beam sensitive sheets as well as on
superconducting materials. In the last case the 3D modification consists of
amorphous nanostructures. The nanostructures create zones with different
dissipative properties with respect to the virgin regions. The main analysis
method consists of magneto-optical imaging that provides local information on
the electrodynamics of the modified zones. Features typical of non-linear
current flow hint at which pattern geometry is more functional to applications
in the framework of nanostructures across superconducting films.Comment: 7 page
- âŠ