1,071 research outputs found
A new fuzzy set merging technique using inclusion-based fuzzy clustering
This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets
Approximate treatment of electron Coulomb distortion in quasielastic (e,e') reactions
In this paper we address the adequacy of various approximate methods of
including Coulomb distortion effects in (e,e') reactions by comparing to an
exact treatment using Dirac-Coulomb distorted waves. In particular, we examine
approximate methods and analyses of (e,e') reactions developed by Traini et al.
using a high energy approximation of the distorted waves and phase shifts due
to Lenz and Rosenfelder. This approximation has been used in the separation of
longitudinal and transverse structure functions in a number of (e,e')
experiments including the newly published 208Pb(e,e') data from Saclay. We find
that the assumptions used by Traini and others are not valid for typical (e,e')
experiments on medium and heavy nuclei, and hence the extracted structure
functions based on this formalism are not reliable. We describe an improved
approximation which is also based on the high energy approximation of Lenz and
Rosenfelder and the analyses of Knoll and compare our results to the Saclay
data. At each step of our analyses we compare our approximate results to the
exact distorted wave results and can therefore quantify the errors made by our
approximations. We find that for light nuclei, we can get an excellent
treatment of Coulomb distortion effects on (e,e') reactions just by using a
good approximation to the distorted waves, but for medium and heavy nuclei
simple additional ad hoc factors need to be included. We describe an explicit
procedure for using our approximate analyses to extract so-called longitudinal
and transverse structure functions from (e,e') reactions in the quasielastic
region.Comment: 30 pages, 8 figures, 16 reference
State estimation in quantum homodyne tomography with noisy data
In the framework of noisy quantum homodyne tomography with efficiency
parameter , we propose two estimators of a quantum state whose
density matrix elements decrease like , for
fixed known and . The first procedure estimates the matrix
coefficients by a projection method on the pattern functions (that we introduce
here for ), the second procedure is a kernel estimator of the
associated Wigner function. We compute the convergence rates of these
estimators, in risk
Gait speeds classifications by supervised modulation based machine-learning using Kinect camera
Early indication of some diseases such as Parkinson and Multiple Sclerosis often manifests with walking difficulties. Gait analysis provides vital information for assessing the walking patterns during the locomotion, especially when the outcomes are quantitative measures. This paper explores methods that can respond to the changes in the gait features during the swing stage using Kinect Camera, a low cost, marker-free, and portable device offered by Microsoft. Kinect has been exploited for tracking the skeletal positional data of body joints to assess and evaluate the gait performance. Linear kinematic gait features are extracted to discriminate between walking speeds by using five supervised modulation based machine-learning classifiers as follow: Decision Trees (DT), linear/nonlinear Support Vector Machines (SVMs), subspace discriminant and k-Nearest Neighbour (k-NN). The role of modulation techniques such as Frequency Modulation (FM) for increasing the efficiency of classifiers have been explored. The experimental results show that all five classifiers can successfully distinguish gait futures signal associated with walking patterns with high accuracy (average expected value of 86.19% with maximum of 92.9%). This validates the capability of the presented methodology in detecting key “indicators” of health events.
Keywords: Gait Analysis, Kinematic Gait Features, Amplitude and Frequency Modulations, Baseband Signal, Passband Mapping, Machine-Learning, Classification Techniqu
Sum Rules and Moments of the Nucleon Spin Structure Functions
The nucleon has been used as a laboratory to investigate its own spin
structure and Quantum Chromodynamics. New experimental data on nucleon spin
structure at low to intermediate momentum transfers combined with existing high
momentum transfer data offer a comprehensive picture of the transition region
from the {\it confinement} regime of the theory to its {\it asymptotic freedom}
regime. Insight for some aspects of the theory is gained by exploring lower
moments of spin structure functions and their corresponding sum rules (i.e. the
Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are
expressed in terms of an operator product expansion using quark and gluon
degrees of freedom at moderately large momentum transfers. The sum rules are
verified to a good accuracy assuming that no singular behavior of the structure
functions is present at very high excitation energies. The higher twist
contributions have been examined through the moments evolution as the moments
evolution as the momentum transfer varies from higher to lower values.
Furthermore, QCD-inspired low-energy effective theories, which explicitly
include chiral symmetry breaking, are tested at low momentum transfers. The
validity of these theories is further examined as the momentum transfer
increases to moderate values. It is found that chiral perturbation calculations
agree reasonably well with the first moment of the spin structure function
at momentum transfer of 0.1 GeV but fail to reproduce the neutron
data in the case of the generalized polarizability .Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor
modifications in text and improved quality for one figure. Corrected mistakes
in section
Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene
More than a decade after the discovery of graphene, ballistic transport in
nanostructures based on this intriguing material still represents a challenging
field of research in two-dimensional electronics. The presence of rough edges
in nanostructures based on this material prevents the appearance of truly
ballistic electron transport as theo\-re\-tically predicted and, therefore, not
well-developed plateaus of conductance have been revealed to date. In this work
we report on a novel implementation of the cryo-etching method, which enabled
us to fabricate graphene nanoconstrictions encapsulated between hexagonal boron
nitride thin films with unprecedented control of the structure edges. High
quality smooth nanometer-rough edges are characterized by atomic force
microscopy and a clear correlation between low roughness and the existence of
well-developed quantized conductance steps with the concomitant occurrence of
ballistic transport is found at low temperature. In par\-ti\-cu\-lar, we come
upon exact 2 quantization steps of conductance at zero magnetic field
due to size quantization, as it has been theoretically predicted for truly
ballistic electron transport through graphene nanoconstrictions
Assessment of Implementation of an Anaemia Reduction Initiative Including Blanket Supplementary Feeding Distributing LNS and MNP on Anaemia in a Protracted Refugee Situation
Cyclooxygenase-2-Derived Prostacyclin Protective Role on Endotoxin-Induced Mouse Cardiomyocyte Mortality
Cardiovascular dysfunction characterizes septic shock, inducing multiple organ failure and a high mortality rate. In the heart, it has been shown an up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions with subsequent overproduction of nitric oxide (NO) and eicosanoids. This study is focused on the links between these products of inflammation and cell loss of mouse cardiomyocytes during treatment by the Salmonella typhimurium lipopolysaccharide (LPS) in presence or in absence of NOS or COX inhibitors. LPS induced RelA/NF-κB p65 activation, iNOS and COX-2 up-regulations, resulting in NO and prostacyclin releases. These effects were reversed by the NO-synthase inhibitor and increased by the specific COX-2 inhibitor. Immunostainings with FITC-conjugated anti-Annexin-V and propidium iodide and caspase 3/7 activity assay showed that cardiomyocyte necrosis was inhibited by L-NA during LPS treatment challenge, while apoptosis was induced in presence of both LPS and NS-398. No effect on LPS cellular injury was observed using the specific cyclooxygenase-1 (COX-1) inhibitor, SC-560. These findings strongly support the hypothesis of a link between iNOS-dependent NO overproduction and LPS-induced cell loss with a selective protective role allotted to COX-2 and deriving prostacyclins
Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering
An eikonal expansion is used to provide systematic corrections to the eikonal
approximation through order , where is the wave number. Electron
wave functions are obtained for the Dirac equation with a Coulomb potential.
They are used to investigate distorted-wave matrix elements for quasi-elastic
electron scattering from a nucleus. A form of effective-momentum approximation
is obtained using trajectory-dependent eikonal phases and focusing factors.
Fixing the Coulomb distortion effects at the center of the nucleus, the
often-used ema approximation is recovered. Comparisons of these approximations
are made with full calculations using the electron eikonal wave functions. The
ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure
- …
