1,071 research outputs found

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Approximate treatment of electron Coulomb distortion in quasielastic (e,e') reactions

    Full text link
    In this paper we address the adequacy of various approximate methods of including Coulomb distortion effects in (e,e') reactions by comparing to an exact treatment using Dirac-Coulomb distorted waves. In particular, we examine approximate methods and analyses of (e,e') reactions developed by Traini et al. using a high energy approximation of the distorted waves and phase shifts due to Lenz and Rosenfelder. This approximation has been used in the separation of longitudinal and transverse structure functions in a number of (e,e') experiments including the newly published 208Pb(e,e') data from Saclay. We find that the assumptions used by Traini and others are not valid for typical (e,e') experiments on medium and heavy nuclei, and hence the extracted structure functions based on this formalism are not reliable. We describe an improved approximation which is also based on the high energy approximation of Lenz and Rosenfelder and the analyses of Knoll and compare our results to the Saclay data. At each step of our analyses we compare our approximate results to the exact distorted wave results and can therefore quantify the errors made by our approximations. We find that for light nuclei, we can get an excellent treatment of Coulomb distortion effects on (e,e') reactions just by using a good approximation to the distorted waves, but for medium and heavy nuclei simple additional ad hoc factors need to be included. We describe an explicit procedure for using our approximate analyses to extract so-called longitudinal and transverse structure functions from (e,e') reactions in the quasielastic region.Comment: 30 pages, 8 figures, 16 reference

    State estimation in quantum homodyne tomography with noisy data

    Get PDF
    In the framework of noisy quantum homodyne tomography with efficiency parameter 0<η10 < \eta \leq 1, we propose two estimators of a quantum state whose density matrix elements ρm,n\rho_{m,n} decrease like eB(m+n)r/2e^{-B(m+n)^{r/ 2}}, for fixed known B>0B>0 and 0<r20<r\leq 2. The first procedure estimates the matrix coefficients by a projection method on the pattern functions (that we introduce here for 0<η1/20<\eta \leq 1/2), the second procedure is a kernel estimator of the associated Wigner function. We compute the convergence rates of these estimators, in L2\mathbb{L}_2 risk

    Gait speeds classifications by supervised modulation based machine-learning using Kinect camera

    Get PDF
    Early indication of some diseases such as Parkinson and Multiple Sclerosis often manifests with walking difficulties. Gait analysis provides vital information for assessing the walking patterns during the locomotion, especially when the outcomes are quantitative measures. This paper explores methods that can respond to the changes in the gait features during the swing stage using Kinect Camera, a low cost, marker-free, and portable device offered by Microsoft. Kinect has been exploited for tracking the skeletal positional data of body joints to assess and evaluate the gait performance. Linear kinematic gait features are extracted to discriminate between walking speeds by using five supervised modulation based machine-learning classifiers as follow: Decision Trees (DT), linear/nonlinear Support Vector Machines (SVMs), subspace discriminant and k-Nearest Neighbour (k-NN). The role of modulation techniques such as Frequency Modulation (FM) for increasing the efficiency of classifiers have been explored. The experimental results show that all five classifiers can successfully distinguish gait futures signal associated with walking patterns with high accuracy (average expected value of 86.19% with maximum of 92.9%). This validates the capability of the presented methodology in detecting key “indicators” of health events. Keywords: Gait Analysis, Kinematic Gait Features, Amplitude and Frequency Modulations, Baseband Signal, Passband Mapping, Machine-Learning, Classification Techniqu

    Sum Rules and Moments of the Nucleon Spin Structure Functions

    Full text link
    The nucleon has been used as a laboratory to investigate its own spin structure and Quantum Chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the {\it confinement} regime of the theory to its {\it asymptotic freedom} regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are expressed in terms of an operator product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to a good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher twist contributions have been examined through the moments evolution as the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1g_1 at momentum transfer of 0.1 GeV2^2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT\delta_{LT}.Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor modifications in text and improved quality for one figure. Corrected mistakes in section

    Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene

    Get PDF
    More than a decade after the discovery of graphene, ballistic transport in nanostructures based on this intriguing material still represents a challenging field of research in two-dimensional electronics. The presence of rough edges in nanostructures based on this material prevents the appearance of truly ballistic electron transport as theo\-re\-tically predicted and, therefore, not well-developed plateaus of conductance have been revealed to date. In this work we report on a novel implementation of the cryo-etching method, which enabled us to fabricate graphene nanoconstrictions encapsulated between hexagonal boron nitride thin films with unprecedented control of the structure edges. High quality smooth nanometer-rough edges are characterized by atomic force microscopy and a clear correlation between low roughness and the existence of well-developed quantized conductance steps with the concomitant occurrence of ballistic transport is found at low temperature. In par\-ti\-cu\-lar, we come upon exact 2e2/he^{2}/h quantization steps of conductance at zero magnetic field due to size quantization, as it has been theoretically predicted for truly ballistic electron transport through graphene nanoconstrictions

    Cyclooxygenase-2-Derived Prostacyclin Protective Role on Endotoxin-Induced Mouse Cardiomyocyte Mortality

    Get PDF
    Cardiovascular dysfunction characterizes septic shock, inducing multiple organ failure and a high mortality rate. In the heart, it has been shown an up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions with subsequent overproduction of nitric oxide (NO) and eicosanoids. This study is focused on the links between these products of inflammation and cell loss of mouse cardiomyocytes during treatment by the Salmonella typhimurium lipopolysaccharide (LPS) in presence or in absence of NOS or COX inhibitors. LPS induced RelA/NF-κB p65 activation, iNOS and COX-2 up-regulations, resulting in NO and prostacyclin releases. These effects were reversed by the NO-synthase inhibitor and increased by the specific COX-2 inhibitor. Immunostainings with FITC-conjugated anti-Annexin-V and propidium iodide and caspase 3/7 activity assay showed that cardiomyocyte necrosis was inhibited by L-NA during LPS treatment challenge, while apoptosis was induced in presence of both LPS and NS-398. No effect on LPS cellular injury was observed using the specific cyclooxygenase-1 (COX-1) inhibitor, SC-560. These findings strongly support the hypothesis of a link between iNOS-dependent NO overproduction and LPS-induced cell loss with a selective protective role allotted to COX-2 and deriving prostacyclins

    Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering

    Full text link
    An eikonal expansion is used to provide systematic corrections to the eikonal approximation through order 1/k21/k^2, where kk is the wave number. Electron wave functions are obtained for the Dirac equation with a Coulomb potential. They are used to investigate distorted-wave matrix elements for quasi-elastic electron scattering from a nucleus. A form of effective-momentum approximation is obtained using trajectory-dependent eikonal phases and focusing factors. Fixing the Coulomb distortion effects at the center of the nucleus, the often-used ema approximation is recovered. Comparisons of these approximations are made with full calculations using the electron eikonal wave functions. The ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure
    corecore