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Résumé

In the framework of noisy quantum homodyne tomography with efficiency param-

eter 0 < η ≤ 1, we propose two estimators of a quantum state whose density matrix

elements ρm,n decrease like e−B(m+n)r/2

, for fixed known B > 0 and 0 < r ≤ 2. The

first procedure estimates the matrix coefficients by a projection method on the pattern

functions (that we introduce here for 0 < η ≤ 1/2), the second procedure is a kernel es-

timator of the associated Wigner function. We compute the convergence rates of these

estimators, in L2 risk.

Keywords : density matrix, Gaussian noise, L2-risk, nonparametric estimation, pattern

functions, quantum homodyne tomography, quantum state, Radon transform, Wigner func-
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1 Introduction

Experiments in quantum optics consist in creating, manipulating and measuring quantum

states of light. The technique called quantum homodyne tomography allows to retrieve

partial, noisy information from which the state is to be recovered : this is the subject of

the present chapter.

1.1 Quantum states

Mathematically, the main concepts of quantum mechanics are formulated in the language of

selfadjoint operators acting on Hilbert spaces. To every quantum system one can associate

a complex Hilbert space H whose vectors represent the wave functions of the system. These

vectors are identified to projection operators, or pure states. In general, a state is a mixture

of pure states described by a compact operator ρ on H having the following properties :

1. Selfadjoint : ρ = ρ∗, where ρ∗ is the adjoint of ρ.

2. Positive : ρ ≥ 0, or equivalently 〈ψ, ρψ〉 ≥ 0 for all ψ ∈ H.

3. Trace one : tr(ρ) = 1.

When H is separable, endowed with a countable orthonormal basis, the operator ρ is

identified to a density matrix [ρm,n]m,n∈N.

The positivity property implies that all the eigenvalues of ρ are nonegative and by the trace

property, they sum up to one. In the case of the finite dimensional Hilbert space Cd, the

density matrix is simply a positive semi-definite d× d matrix of trace one. Our setup from

now on will be H = L2(R), in which case we employ the orthonormal Fock basis made of

the Hermite functions

hm(x) := (2mm!
√
π)−

1
2Hm(x)e−

x2

2 (1)

where Hm(x) := (−1)mex
2 dm

dxm e−x2
is the m-th Hermite polynomial. Generalizations to

higher dimensions are straightforward.

To each state ρ corresponds a Wigner distribution Wρ, which is defined via its Fourier

transform in the way indicated by equation (2) :

W̃ρ(u, v) :=

∫∫
e−i(uq+vp)Wρ(q, p)dqdp := Tr

(
ρ exp(−iuQ − ivP)

)
(2)
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where Q and P are canonically conjugate observables (e.g. electric and magnetic fields)

satisfying the commutation relation [Q,P] = i (we assume a choice of units such that

~ = 1). It is easily checked that Wρ is real-valued, has integral
∫∫

R2 Wρ(q, p)dqdp = 1 and

uniform bound |Wρ(q, p)| ≤ 1
π .

For any φ ∈ R, the Wigner distribution allows one to easily recover the probability density

x 7→ pρ(x, φ) of Q cosφ+ P sinφ by

pρ(x, φ) = R[Wρ](x, φ), (3)

where R is the Radon transform defined in equation (4)

R[Wρ](x, φ) =

∫ ∞

−∞
Wρ(x cosφ− t sinφ, x sinφ+ t cosφ)dt. (4)

Moreover, the correspondence between ρ and Wρ is one to one and isometric with respect

to the L2 norms as in equation (5) :

‖Wρ‖2
2 :=

∫∫
|Wρ(q, p)|2dqdp =

1

2π
‖ρ‖2

2 :=
1

2π

∞∑

j,k=0

|ρjk|2. (5)

From now on we denote by 〈·, ·〉 and ‖·‖ the usual Euclidian scalar product and norm, while

C(·) will denote positive constants depending on parameters given in the parentheses.

We suppose that the unknown state belongs to the class R(B, r) for B > 0 and 0 < r ≤ 2

defined by

R(B, r) := {ρ quantum state : |ρm,n| ≤ exp(−B(m+ n)r/2)}. (6)

For simplicity, we have chosen to express the results relative to a class which is the intersec-

tion of the (positive) ball of radius 1 in some Banach space with the hyperplane tr(ρ) = 1.

Another radius for the class would only change the constant C in front of the asymptotic

rates of convergence that we will find.

As it will be made precise in Propositions 1 and 2, quantum states in the class given in (6)

have fast decreasing and very smooth Wigner functions. From the physical point of view,

the choice of such a class of Wigner functions seems to be quite reasonable considering that

typical states ρ prepared in the laboratory do satisfy this type of condition.
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1.2 Statistical model

Let us describe the statistical model. Consider (X1,Φ1), . . . , (Xn,Φn) independent iden-

tically distributed random variables with values in R × [0, π] and distribution Pρ having

density pρ(x, φ) (given by (3) with respect to 1
πλ, λ being the Lebesgue measure on R×[0, π].

The aim is to recover the density matrix ρ and the Wigner function Wρ from the observa-

tions.

However, there is a slight complication. What we observe are not the variables (Xℓ,Φℓ) but

the noisy ones (Yℓ,Φℓ), where

Yℓ :=
√
ηXℓ +

√
(1 − η)/2 ξℓ, (7)

with ξℓ a sequence of independent identically distributed standard Gaussians which are

independent of all (Xj ,Φj). The detection efficiency parameter 0 < η ≤ 1 is known from

the calibration of the apparatus and we denote by Nη the centered Gaussian density of

variance (1 − η)/2, and Ñη its Fourier transform. Then the density pη
ρ of (Yℓ,Φℓ) is given

by the convolution of the density pρ(·/
√
η, φ)/

√
η with Nη

pη
ρ(y, φ) =

∫ ∞

−∞

1√
η
pρ

(
y − x√

η
, φ

)
Nη(x)dx

=:

(
1√
η
pρ

( ·√
η
, φ

)
∗Nη

)
(y).

In the Fourier domain this relation becomes

F1[p
η
ρ(·, φ)](t) = F1[pρ(·, φ)](t

√
η)Ñη(t), (8)

where F1 denotes the Fourier transform with respect to the first variable.

The theoretical foundation of quantum homodyne tomography was outlined in [29] and

has inspired the first experiments determining the quantum state of a light field, initially

with optical pulses in [26, 25, 19]. The reconstruction of the density from averages of data

has been discussed or studied in [10, 9, 20, 1] for η = 1 (no photon loss). Max-likelihood

methods have been studied in [3, 1, 12, 15] and procedure using adaptive tomographic

kernels to minimize the variance has been proposed in [11]. The estimation of the density

matrix of a quantum state of light in case of efficiency parameter 1
2 < η ≤ 1 has been

discussed in [7, 12, 8] and considered in [23] via the pattern functions for the diagonal

elements.
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1.3 Outline of the results

The goal of this chapter is to define estimators of both the density matrix and the Wigner

function and to compare their performance in L2 risk. In order to compute estimation

risks and to tune the underlying parameters, we define a realistic class of quantum states

R(B, r), depending on parameters B > 0 and 0 < r ≤ 2, in which the elements of the

density matrix decrease rapidly.

In Section 2, we prove that the fast decay of the elements of the density matrix implies both

rapid decay of the Wigner function and of its Fourier transform, allowing us to translate

the classes R(B, r) in terms of Wigner functions.

In Section 3, we give estimators of the density matrix ρ. The legend was somehow forged

that no estimation of the matrix is possible when 0 < η ≤ 1/2. The physicists argue

that their machines actually have high detection efficiency, around 0.8 ; it is nevertheless

satisfying to be able to solve this problem in any noise condition. We give here the so-

called pattern functions to use for estimating the density matrix in the noisy case with any

value of η between 0 and 1. These pattern functions allow us to solve an inverse problem

which becomes (severly) ill-posed when 0 < η ≤ 1/2. In this case, we regularize the inverse

problem and this introduces a smoothing parameter which we will choose in an optimal

way. We compute the upper bounds for the rates achieved by our methods, with L2 risk

measure.

In Section 4, we study a kernel estimator of the Wigner function in L2 risk, over the

same class of Wigner functions. It is a truncated version of the estimator in [4] and tuned

accordingly. We compute upper bounds for the rates of convergence of this estimator in L2

risk.

To conclude, we may infer that the performances of both estimators are comparable. We

obtain nearly polynomial rates for the case r = 2 and intermediate rates for 0 < r < 2

(faster than any logarithm, but slower than any polynomial). It is convenient to have

methods to estimate directly both representations of a quantum state. The estimator of

the matrix ρ can be more easily projected on the space of proper quantum states. On the

other hand, we may capture some features of the quantum states more easily on the Wigner

function, for instance when this function has significant negative parts, the fact that the

quantum state is non classical.
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2 Decrease and smoothness of the Wigner distribution

We recall that the Wigner distribution Wρ was defined in the introduction. In the Fock

basis, we can write Wρ in terms of the density matrix [ρm,n] as follows (see Leonhardt [19]

for the details).

Wρ(q, p) =
∑

m,n

ρm,nWm,n(q, p)

where

Wm,n(q, p) =
1

π

∫
e2ipxhm(q − x)hn(q + x)dx. (9)

It can be seen that Wm,n(q, p) = Wn,m(q,−p) and if m ≥ n,

Wm,n(q, p) =
(−1)m

π

(
n!

m!

) 1
2

e−(q2+p2)

×
(√

2(ip− q)
)m−n

Lm−n
n

(
2q2 + 2p2

)
(10)

thus, writing z :=
√
q2 + p2,

lm,n(z) := |Wm,n(q, p)| =
2

m−n
2

π

(
n!

m!

) 1
2

e−z2
zm−n

∣∣Lm−n
n (2z2)

∣∣ (11)

where Lα
n(x) := (n!)−1exx−α dn

dxn (e−xxn+α) is the Laguerre polynomial of degree n and

order α. Concerning the Fourier transforms, we also recall that

W̃m,n(q, p) =
(−i)m+n

2
Wm,n

(q
2
,
p

2

)
. (12)

In this section we show how a decrease condition on the coefficients of the density matrix

translates on the corresponding Wigner distribution. First the case r < 2 :

Proposition 1. Assume that 0 < r < 2 and that there exists B > 0 such that, for all

m ≥ n,

|ρm,n| ≤ e−B(m+n)r/2
.

Then for all β < B, there exists z0 (depending explicitly on r,B, β, see proof) such that

z :=
√
q2 + p2 ≥ z0 implies

|Wρ(q, p)| ≤ A(z)e−βzr
(13)

as well as ∣∣∣W̃ρ(q, p)
∣∣∣ ≤ A(z/2)e−β(z/2)r

(14)
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where A(z) := 1
π

(
∑
m,n

e−B(m+n)r/2
+ 4

Brz
4−r

)
.

If r = 2, the result is a little different :

Proposition 2. Suppose that there exists B > 0 such that, for all m ≥ n,

|ρm,n| ≤ e−B(m+n).

Then there exists z0 such that z :=
√
q2 + p2 ≥ z0 implies

|Wρ(q, p)| ≤ A(z)e
− B

(1+
√

B)2
z2

(15)

as well as ∣∣∣W̃ρ(q, p)
∣∣∣ ≤ A(z/2)e

− B
(1+

√
B)2

(z/2)2
(16)

for A(z) = 1
π

(
∑
m,n

e−B(m+n) + 2eB

B(1+
√

B)2
z2

)
.

Note that B

(1+
√

B)
2 < min(B, 1). Even when B is very large, we cannot hope to obtain a

faster decrease because e−z2
is the decrease rate of the basis functions themselves (Lemma

2).

The proof of these propositions is defered to Appendix 5. More general results and converses

are studied in [2]. Let us now state a few general utility lemmata.

Lemma 1. Let y and w be two C2 functions : [x0,+∞) → (0,+∞) such that y′(x) → 0,

w is bounded, satisfying the differential equations

y′′(x) = φ(x)y(x)

w′′(x) = ψ(x)w(x),

with continuous φ(x) ≤ ψ(x), and initial conditions y(x0) = w(x0). Then for all x ≥ x0,

w(x) ≤ y(x).

Démonstration. Suppose that there exists x1 ≥ x0 where w(x1) > y(x1). Then for some

x2 ∈ [x0, x1] we have w′(x2) > y′(x2) and w(x2) ≥ y(x2). Consequently, for all x ≥ x2,

w′′(x) − y′′(x) ≥ 0, and w′(x) − y′(x) ≥ w′(x2) − y′(x2). When x → ∞, lim inf w′(x) ≥
w′(x2) − y′(x2) > 0, which contradicts the boundedness of w.

This lemma is used to prove a bound on the Laguerre functions.
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Lemma 2. For all m,n ∈ N and s :=
√
m+ n+ 1, for all z ≥ 0,

lm,n(z) ≤ 1

π





1 if 0 ≤ z ≤ s

e−(z−s)2 if z ≥ s.
(17)

Démonstration. When z ≤ s, the result follows from the uniform bound on Wigner func-

tions obtained by applying the Cauchy-Schwarz inequality to (9).

When z ≥ s, Lα
n(2z2) doesn’t vanish and keeps the same sign as Lα

n(2s2). Now, as it can

be seen from [27, 5.1.2], the function w(z) :=
√
zlm,n(z) satisfies the differential equation

w′′ = (4(z2 − s2) + α2−1/4
z2 )z. On the other hand, y(z) :=

√
slm,n(s)e−(z−s)2 satisfies y′′ =

(4(z − s)2 − 2)y. When z ≥ s,

4(z − s)2 − 2 < 4(z2 − s2) +
α2 − 1/4

z2
(18)

from which we conclude with Lemma 1 that w(z) ≤ y(z).

Finally, a lemma to bound the tail of a series.

Lemma 3. If ν > 0 and C > 0, there exists a z0 such that z ≥ z0 implies

∑

m+n≥z

e−C(m+n)ν ≤ 2

Cν
z2−νe−Czν

. (19)

Démonstration. First notice that

∑

m+n≥z

e−C(m+n)ν
=
∑

t≥z

(t+ 1)e−Ctν ≤
∫ ∞

z
(t+ 1)e−Ctνdt.

When t ≥ z and z is large enough, we have

∫ ∞

z
(t+ 1)e−Ctνdt ≤ 2

Cν

∫ ∞

z

(
Cνt− (2 − ν)t1−ν

)
e−Ctνdt

≤ 2

Cν
z2−νe−Czν

which is what we needed to prove.

3 Density matrix estimation

The aim of this part is to estimate the density matrix ρ in the Fock basis directely from the

data (Yi,Φi)i=1,...,n. We show that for 0 < η ≤ 1/2 it is still possible to estimate the density
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matrix with an error of estimation tending to 0 as n tends to infinity (Theorem 3). In both

cases (η > 1
2 and η ≤ 1

2), we construct an estimator of the density matrix (ρj,k)j,k≤N−1 from

a sample of QHT data. We give theoretical results for our estimator when the quantum

state ρ is in the class of density matrix with decreasing elements defined in (6).

3.1 Pattern functions

The matrix elements ρj,k of the state ρ in the Fock basis (1) can be expressed as kernel

integrals : for all j, k ∈ N,

ρj,k =
1

π

∫ ∫ π

0
pρ(x, φ)fj,k(x)e

−i(k−j)φdφdx (20)

where fj,k = fk,j are bounded real functions called pattern functions in quantum homodyne

literature. A concrete expression for their Fourier transform using Laguerre polynomials

was found in [24] : for j ≥ k,

f̃k,j(t) = 2π2|t|W̃j,k(t, 0)

= π(−i)j−k

√
2k−jk!

j!
|t|tj−ke−

t2

4 Lj−k
k (

t2

2
). (21)

where f̃k,j denotes the Fourier transform of the Pattern function fk,j.

Let us state the lemmata which are used to prove upper bounds in Propositions 3, 4 and 5.

Lemma 4. There exist constants C2, C∞ such that

∑N
j+k=0 ‖fk,j‖2

2 ≤ C2N
17
6 and

∑N
j+k=0 ‖fk,j‖2

∞ ≤ C∞N
10
3 .

This is a slight improvement over [1, Lemma 1].

Démonstration. By symmetry we can restrict the sum to j ≥ k. For fixed k and j we have

∥∥∥f̃k,j

∥∥∥
2

2
=

∫

|t|<2s

∣∣∣f̃k,j(t)
∣∣∣
2
dt +

∫

|t|>2s

∣∣∣f̃k,j(t)
∣∣∣
2
dt

(with s =
√
k + j + 1). Because of Lemma 2, it is clear that the second integral is negligible

in front of the first one, which we simply bound by 4s
∥∥∥f̃k,j

∥∥∥
2

∞
.

In view of (21), the main result in [18] can be rewritten as follows : if k ≥ 35 and j−k ≥ 24,

then ∥∥∥f̃k,j

∥∥∥
2

∞
≤ 2888π2(j + 1)

1
2 k−

1
6 . (22)

9



In consequence, for these values of k and j,

∥∥∥f̃k,j

∥∥∥
2

2
≤ C(jk−

1
6 + j

1
2k

1
3 ). (23)

On the other hand, a classical bound on Laguerre polynomials found in [27] yields that,

for fixed values of j − k,
∥∥∥f̃k,j

∥∥∥
2

∞
≤ Ck

1
3 , hence for all k ≥ 35 and j − k < 24,

∥∥∥f̃k,j

∥∥∥
2

2
≤ C(j

1
2 k

1
3 + k

5
6 ). (24)

When k < 35, we can use another result in [17] which gives
∥∥∥f̃k,j

∥∥∥
2

∞
≤ Ck

1
6 j

1
2 independently

of j − k, thus ∥∥∥f̃k,j

∥∥∥
2

2
≤ Cj. (25)

Comparing (23), (24) and (25) we see that when N is large enough, in the sum over

0 ≤ j, k ≤ N , the terms k ≥ 35, j − k ≥ 24 dominate and (23) yields the first inequality.

The second inequality is obtained by doing a similar computation, starting with ‖fj,k‖∞ ≤∥∥∥f̃j,k

∥∥∥
1

and using (22) to bound

∥∥∥f̃j,k

∥∥∥
2

1
≤ C(j

3
2k−

1
6 + j

1
2k

5
6 )

when k ≥ 35 and j − k ≥ 24.

In the presence of noise, it is necessary to adapt the pattern functions as follows. From now

on, we shall use the notation γ := 1−η
4η . When 1

2 < η ≤ 1, we denote by fη
k,j the function

which has the following Fourier transform :

f̃η
k,j(t) := f̃k,j(t)e

γt2 . (26)

When 0 < η ≤ 1
2 , we introduce a cut-off parameter δ > 0 and define fη,δ

k,j via its Fourier

transform :

f̃η,δ
k,j (t) := f̃k,j(t)e

γt2I

(
|t| ≤ 1

δ

)
. (27)

Then we compute bounds on these pattern functions.

Lemma 5. For 1 > η > 1/2, there exist constants Cη
2 and Cη

∞ such that

∑N
j+k=0

∥∥∥fη
k,j

∥∥∥
2

2
≤ Cη

2N
5
6 e8γN and

∑N
j+k=0

∥∥∥fη
k,j

∥∥∥
2

∞
≤ Cη

∞N
1
3 e8γN .
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Démonstration. The proof is similar to the previous one and we skip some details. Once

again we assume j ≥ k and write

∥∥∥f̃η
k,j

∥∥∥
2

2
=

∫

|t|<2s

∣∣∣f̃k,j(t)
∣∣∣
2
e2γt2dt +

∫

|t|>2s

∣∣∣f̃k,j(t)
∣∣∣
2
e2γt2dt

(where s =
√
k + j + 1). Because of Lemma 2, the second integral is of the same order as

the first one, which we bound by

∥∥∥f̃k,j

∥∥∥
2

∞

∫

|t|<2s
e2γt2dt ≤ C

∥∥∥f̃k,j

∥∥∥
2

∞
s−1e8γs2

.

In the sum we are considering the terms k ≥ 35 and j − k ≥ 24 are dominant and, once

again thanks to (22), remembering that s =
√
j + k + 1,

∥∥∥f̃η
k,j

∥∥∥
2

2
≤ Ck−

1
6 e8γ(j+k)

hence the first inequality.

The second inequality is, in the same fashion, based on

∥∥∥fη
k,j

∥∥∥
2

∞
≤
∥∥∥f̃η

k,j

∥∥∥
2

1
≤ C

(
j

1
4 k−

1
12

∫

|t|<2s
eγt2dt

)2

≤ Cj−
1
2 k−

1
6 e8γ(j+k)

when k ≥ 35 and j − k ≥ 24, and the bound on the sum readily follows.

3.2 Estimation procedure

For N := N(n) → ∞ and δ := δ(n) → 0, let us define our estimator of ρj,k for 0 ≤ j + k ≤
N − 1 by

ρ̂η
j,k :=

1

n

n∑

ℓ=1

Gj,k

(
Yℓ√
η
,Φℓ

)
, (28)

where

Gj,k(x, φ) :=





fη
j,k(x)e

−i(j−k)φ if 1
2 < η ≤ 1

fη,δ
j,k (x)e−i(j−k)φ if 0 < η ≤ 1

2 .

using the pattern functions defined in (26) and (27). We assume that the density matrix

ρ belongs to the class R(B, r) defined in (6). In order to evaluate the performance of our

estimators we take the L2 distance on the space of density matrices ‖τ − ρ‖2
2 := tr(|τ −

11



ρ|2) =
∑∞

j,k=0 |τj,k − ρj,k|2. We consider the mean integrated square error (MISE) and split

it into a troncature bias term b21(n), a regularization bias terms b22(n) and a variance term

σ2(n).

E




∞∑

j,k=0

∣∣∣ρ̂η
j,k − ρj,k

∣∣∣
2


 =

∑

j+k≥N

|ρj,k|2 +

N−1∑

j+k=0

∣∣∣E[ρ̂η
j,k] − ρj,k

∣∣∣
2

+
N−1∑

j+k=0

E
∣∣∣ρ̂η

j,k − E[ρ̂η
j,k]
∣∣∣
2

=: b21(n) + b22(n) + σ2(n).

The following propositions give upper bounds for b21(n), b22(n) and σ2(n) in the different

cases η = 1, 1/2 < η < 1 or 0 < η ≤ 1/2 and r = 2 or 0 < r < 2. Their proofs are defered

to Appendix 5.

Proposition 3. Let ρ̂η
j,k be the estimator defined by (28), for 0 < η < 1, with δ → 0 and

N → ∞ as n→ ∞, then for all B > 0 and 0 < r ≤ 2,

sup
ρ∈R(B,r)

b21(n) ≤ c1N
2−r/2e−2BNr/2

(29)

where c1 is a positive constant depending on B and r.

Proposition 4. Let ρ̂η
j,k be the estimator defined by (28), for 0 < η ≤ 1/2, with N → ∞

as n→ ∞ and 1/δ ≥ 2
√
N . In the case r = 2, for β := B/(1 +

√
B)2 there exists c2, while

in the case 0 < r < 2, for any β < B there exists c2 and n0 such that for n ≥ n0 :

sup
ρ∈R(B,r)

b22(n) ≤ c2N
2δ4r−12e

− 2β
(2δ)r

− 1
2(

1
δ
−2

√
N)

2

. (30)

Note that for 1/2 < η ≤ 1 we have b2(n) = 0 for all 0 < r ≤ 2 (ρ̂η
j,k is unbiased).

Proposition 5. For ρ̂η
j,k the estimator defined by (28),

sup
ρ∈R(B,r)

σ2(n) ≤ c3
δN17/6

n
e

2γ

δ2 if 0 < η ≤ 1/2 (31)

sup
ρ∈R(B,r)

σ2(n) ≤ c′3
N1/3

n
e8γN if 1/2 < η < 1 (32)

sup
ρ∈R(B,r)

σ2(n) ≤ c′′3
N

17
6

n
if η = 1 (33)

where c3, c
′
3 are positive constants depending on η.

12



We measure the accuracy of ρ̂η
j,k by the maximal risk over the class R(B, r)

lim sup
n→∞

sup
ρ∈R(B,r)

ϕ−2
n E




∞∑

j,k=0

∣∣∣ρ̂η
j,k − ρj,k

∣∣∣
2


 ≤ C0. (34)

where C0 is a positive constant and ϕ2
n is a sequence which tends to 0 when n→ ∞ and it

is the rate of convergence. Cases η = 1 (no noise), 1
2 < η < 1 (weak noise) and 0 < η ≤ 1

2

(strong noise) are studied respectively in Theorems 1, 2 and 3.

Theorem 1. When η = 1, the estimator defined in (28) for the model (7), where the

unknown state belongs to the class R(B, r), satisfies the upper bound (34) with

ϕ2
n = log(n)

17
3rn−1

obtained by taking N(n) :=
(

log(n)
2B

) 2
r
.

Démonstration. With the proposed N(n) one checks that the bias (29) is smaller than the

variance (33) which is bounded by a constant times log(n)
17
3rn−1.

Theorem 2. When 1
2 < η < 1, the estimator defined in (28) for the model (7), where the

unknown state belongs to the class R(B, r), satisfies the upper bound (34) with

– For r = 2,

ϕ2
n = log(n)

12γ+B
3(4γ+B)n−

B
4γ+B

with N(n) := log(n)
2(4γ+B)

(
1 + 2

3
log(log n)

log(n)

)
.

– For 0 < r < 2,

ϕ2
n = log(n)2−r/2e−2BN(n)r/2

where N(n) is the solution of the equation 8γN + 2BN r/2 = log(n).

In that case we have N(n) = 1
8γ log(n) − 2B

(8γ)1+r/2 log(n)r/2 + o(log(n)r/2).

Démonstration. When r = 2, the proposedN(n) ensures that the variance (32) is equivalent

to the bias (29), which is bounded by a constant times log(n)
12γ+B

3(4γ+B)n−
B

4γ+B .

When 0 < r < 2, the proposed N(n) makes the variance (32) bounded by a constant times

e−2BN(n)r/2
, which is smaller than the bias, the latter being bounded by a constant times

N(n)2−r/2e−2BN(n)r/2
.

The asymptotic expansion of N(n) is a standard consequence of its definition by the equa-

tion 8γN + 2BN r/2 = log(n).

13



Theorem 3. When 0 < η ≤ 1
2 , the estimator defined in (28) for the model (7), where the

unknown state belongs to the class R(B, r), satisfies the upper bound (34) with

ϕ2
n = N2−r/2e−2BNr/2

where N and δ are solutions of the system




2β
(2δ)r + 1

2(1
δ − 2

√
N)2 + 2γ

δ2 = log(n)

2β
(2δ)r + 1

2(1
δ − 2

√
N)2 − 2BN r/2 = (log log(n))2

(35)

for arbitrary β < B in the case 0 < r < 2 or




β+4γ
2δ2 + 1

2 (1
δ − 2

√
N)2 − 5

3 log(N) = log(n)

β
2δ2 + 1

2 (1
δ − 2

√
N)2 − 2BN − 3 log(N) = 0

(36)

with β := B
(1+

√
B)2

in the case r = 2.

Theses bounds are optimal in the sense that (35) and (36) are obtained by minimizing the

sum of the bounds (29), (30) and (31).

Démonstration. We use the standard notations a(n) ∼ b(n) if a(n)
b(n) → 1 and a(n) ≈ b(n) if

there exists a constant M <∞ such that 1
M ≤ a(n)

b(n) ≤M for all n.

Let us first examine the case 0 < r < 2. Remark that the left-hand term of the second

equation in (35) is strictly negative when 1/δ = 2
√
N and increases to ∞ with 1/δ. This

proves that the solution satisfies 1/δ > 2
√
N and that Proposition 4 applies. Furthermore,

if we suppose that 1/δ√
N

is unbounded when n → ∞, then (up to taking a subsequence) by

the first equation
1
2
+2γ

δ2 ∼ log(n) whereas, by subtracting the two, 2γ
δ2 ∼ log(n), which is

contradictory. So 1/δ ≈
√
N and we deduce that N ≈ log(n). Then (30) yields

log

(
b22(n)

N2−r/2e−2BNr/2

)
≤ (4r − 12) log(δ) +

r

2
log(N) − (log log(n))2 → −∞

whereas (31) gives

log

(
σ2(n)

N2−r/2e−2BNr/2

)
≤ log(δ) + (

5

6
+
r

2
) log(N) − (log log(n))2 → −∞.

We see that the dominant term is the bound (29) on b21(n), hence the result.

When r = 2, the same reasoning as above yields 1/δ > 2
√
N , 1/δ ≈

√
N and N ≈ log(n).

Then the right-hand side of (30) and (31) are of the same order as Ne−2BN , which is the

bound (29) on b21(n).
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4 Wigner function estimation

4.1 Kernel estimator

We describe now the direct estimation method for the Wigner function. For the problem

of estimating a probability density f : R2 → R directly from data (Xℓ,Φℓ) with density

R[f ] we refer to the literature on X-ray tomography and PET, studied by [28, 16, 21, 6]

and many other references therein. In the context of tomography of bounded objects with

noisy observations [13] solved the problem of estimating the borders of the object (the

support). The estimation of a quadratic functional of the Wigner function has been treated

in [22]. For the problem of Wigner function estimation when no noise is present, we mention

the work by [14]. They use a kernel estimator and compute sharp minimax results over a

class of Wigner functions characterised by their smoothness. In a more recent paper [4],

Butucea, Guţă and Artiles treated the noisy problem for the pointwise estimation of Wρ ;

however the functions needed to prove minimax optimality there do not belong to the class

of Wigner functions that we consider here.

In this chapter, as in [4], we modify the usual tomography kernel in order to take into

account the additive noise on the observations and construct a kernel Kη
h which performs

both deconvolution and inverse Radon transform on our data, asymptotically. Let us define

the estimator :

Ŵ η
h (q, p) =

1

πn

n∑

ℓ=1

Kη
h

(
q cos Φℓ + p sin Φℓ −

Yℓ√
η

)
, (37)

where 0 < η < 1 is a fixed parameter, and the kernel is defined by

Kη
h(u) =

1

4π

∫ 1/h

−1/h

exp(−iut)|t|
Ñη(t/

√
η)

dt, K̃η
h (t) =

1

2

|t|
Ñη(t/

√
η)
I(|t| ≤ 1/h), (38)

and h > 0 tends to 0 when n → ∞ in a proper way to be chosen later. For simplicity, let

us denote z = (q, p) and [z, φ] = q cosφ+ p sinφ, then the estimator can be written :

Ŵ η
h (z) =

1

πn

n∑

ℓ=1

Kη
h

(
[z,Φℓ] −

Yℓ√
η

)
.

This is a one-step procedure for treating two successive inverse problems. The main differ-

ence with the noiseless problem treated by [14] is that the deconvolution is more ‘difficult’

than the inverse Radon transform. In the literature on inverse problems, this problem would

15



be qualified as severely ill-posed, meaning that the noise is dramatically (exponentially)

smooth and makes the estimation problem much harder.

4.2 L2 risk estimation

We establish next the rates of estimation ofWρ from i.i.d. observations (Yℓ,Φℓ), ℓ = 1, . . . , n

when the quality of estimation is measured in L2 distance. In the literature, L2 tomography

is usually performed for boundedly supported functions, see [16] and [21]. However, most

Wigner function do not have a bounded support ! Instead, we use the fact that Wigner

functions in the class R(B, r) decrease very fast and show that a properly truncated es-

timator attains the rates we may expect from the statistical problem of deconvolution in

presence of tomography. Thus, we modify the estimator by truncating it over a disc with

increasing radius, as n→ ∞. Let us denote

D(sn) = {z = (q, p) ∈ R2 : ‖z‖ ≤ sn} ,

where sn → ∞ as n→ ∞ will be defined in Theorem 4. Let now

Ŵ η,∗
h,n(z) = Ŵ η

h,n(z)ID(sn)(z). (39)

From now on, we will denote for any function f ,

‖f‖2
D(sn) =

∫

D(sn)
f2(z)dz,

and by D(sn) the complementary set of D(sn) in R2. Then,

E

[∥∥∥Ŵ η,∗
h −Wρ

∥∥∥
2

2

]
= E

[∥∥∥Ŵ η
h −Wρ

∥∥∥
2

D(sn)

]
+ ‖Wρ‖2

D(sn)

= E

[∥∥∥Ŵ η
h − E

[
Ŵ η

h

]∥∥∥
2

D(sn)

]
+
∥∥∥E
[
Ŵ η

h

]
−Wρ

∥∥∥
2

D(sn)

+‖Wρ‖2
D(sn)

.

When replacing the L2 norm with the above restricted integral, the upper bound of the

bias of the estimator is unchanged, whereas the variance part is infinitely larger than the

deconvolution variance in [5]. As the bias is dominating over the variance in this setup, we

can still choose a suitable sequence sn so that the same bandwidth is optimal associated

to the same optimal rate, provided that Wρ decreases fast enough asymptotically. The
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following proposition gives upper bounds for the three components of the L2 risk uniformly

over the class R(B, r).

Proposition 6. Let (Yℓ,Φℓ), ℓ = 1, . . . , n be i.i.d. data coming from the model (7) and let

Ŵ η
h be an estimator (with h → 0 as n → ∞) of the underlying Wigner function Wρ. We

suppose Wρ lies in the class R(B, r), with B > 0 and 0 < r ≤ 2. Then, for sn → ∞ as

n→ ∞ and n large enough,

sup
ρ∈R(B,r)

‖W ρ‖2
D̄(sn) ≤ C1s

10−3r
n e−2βsr

n ,

sup
ρ∈R(B,r)

∥∥∥E[Ŵ η
h ] −Wρ

∥∥∥
2

D(sn)
≤ C2h

3r−10e−
21−rβ

hr

sup
ρ∈R(B,r)

E

[∥∥∥Ŵ η
h,n − E

[
Ŵ η

h,n

]∥∥∥
2

D(sn)

]
≤ C3

s2n
nh

exp

(
2γ

h2

)
,

where β < B is defined in Proposition 1 for 0 < r < 2 and β = B/(1 +
√
B)2 for r = 2,

γ = (1− η)/(4η) > 0, C1, C2, C3 are positive constants, C1, C2, depending on β, B, r and

C3 depending only on η.

We measure the accuracy of Ŵ η,∗
h by the maximal risk over the class R(B, r)

lim sup
n→∞

sup
ρ∈R(B,r)

E

[∥∥∥Ŵ η,∗
h −Wρ

∥∥∥
2
]
ϕ−2

n (L2) ≤ C. (40)

where C is a positive constant and ϕ2
n is a sequence which tends to 0 when n→ ∞ and it

is the rate of convergence.

In the following Theorem we see the phenomenon which was noticed already : deconvolution

with Gaussian type noise is a much harder problem than inverse Radon transform (the

tomography part).

Theorem 4. Let B > 0, 0 < r ≤ 2 and (Yℓ,Φℓ), ℓ = 1, . . . , n be i.i.d. data coming from

the model (7). Then Ŵ η,∗
h defined in (39) with kernel Kη

h in (38) satisfies the upper bound

(40) with

– For r = 2, put β = B/(1 +
√
B)2

ϕ2
n = (log n)

16γ+3β
8γ+2β n−

β
4γ+β ,

with sn = (h)−1 and h =
(

2
4γ+β log n+ 1

4γ+β log(log n)
)−1/2

.
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– For 0 < r < 2 and β < B defined in Proposition 1,

ϕ2
n = h3r−10 exp

(
−21−rβ

hr

)
,

where sn = 1/h and h is the solution of the equation

21−rβ

hr
+

2γ

h2
= log n− (log log n)2.

Sketch of proof of the upper bounds. By Proposition 6, we get

sup
Wρ∈R(B,r)

E

[∥∥∥Ŵ η
h −Wρ

∥∥∥
2
]

≤ C1s
10−3r
n e−2βsr

n + C2h
3r−10 exp

(
− 2β

(2h)r

)

+
C3s

2
n

nh
exp

(
2γ

h2

)
.

=: A1 +A2 +A3

For 0 < r < 2 and by taking derivatives with respect to h and sn, we obtain that the

optimal choice verifies the following equations :

2βsr
n +

2γ

h2
= log(n) + log(hs2(4−r)

n )

21−rβ

hr
+

2γ

h2
= log(n) + log(h2r−7s−2

n ).

We notice therefore that A2 is dominating over A3, which is dominating over A1. The

proposed (sn, h) ensure that the term A2 is still the dominating term and gives the rate of

convergence.

The case r = 2 is treated similarly, by taking derivatives we notice that the term A2 and

the term A3 are of the same order and that the term A1 is smaller than the others.

5 Appendix

5.1 Proof of Proposition 1

Let φ(z) := (z −
√
βzr/2)2 − 1. Since r < 2, for z larger than a certain z0 (which depends

only on β, B and r), it is true that φ(z) ≥
(

β
B

)2/r
z2. It follows that

e−Bφ(z)r/2 ≤ e−βzr
(41)
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If m+ n ≤ φ(z), then s ≤
√

1 + φ(z) and z − s ≥ z −
√

1 + φ(z) =
√
βzr/2. By (17), this

means that lm,n(z) ≤ 1
πe

−βzr
. So

∑

m+n≤φ(z)

|ρm,n|lm,n(z) ≤ Ae−βzr
(42)

for A := 1
π

∑
m,n e

−B(m+n)r/2
.

On the other hand, using Lemma 3 with ν := r/2, if φ(z) ≥ z0,

∑

m+n≥φ(z)

|ρm,n|lm,n(z) ≤ 4

πBr
φ(z)2−r/2e−Bφ(z)r/2

≤ 4

πBr
z4−re−βzr

(43)

by (17) and (41). Combining (42) and (43) yields the announced result. The bound on W̃ρ

is then a direct consequence of (12).

5.2 Proof of Proposition 2

Let φ(z) := θz2 − 1, where θ := 1
(1+

√
B)2

is the solution in (0, 1) of (1 −
√
θ)2 = Bθ.

When m+ n ≤ φ(z), then s ≤
√
θz and z − s ≥ z(1 −

√
θ) =

√
Bθz. By (17), this means

that lm,n(z) ≤ 1
πe

−Bθz2
. So

∑

m+n≤φ(z)

|ρm,n|lm,n(z) ≤ Ae−Bθz2
(44)

for A := 1
π

∑
m,n e

−B(m+n).

On the other hand, by Lemma 3, if φ(z) ≥ z0,

∑

m+n≥φ(z)

|ρm,n|lm,n(z) ≤ 2

πB
φ(z)e−Bφ(z)

≤ 2θeB

πB
z2e−Bθz2

(45)

by (17) and (41). Combining (44) and (45) yields the announced result. The bound on W̃ρ

is then a direct consequence of (12).

5.3 Proof of Proposition 3

By (6) the term b21(n) can be bounded as follows

b21(n) =
∑

j+k≥N

|ρj,k|2 ≤
∑

j+k≥N

exp(−2B(j + k)r/2).
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Compare to the double integral and change to polar coordinates to get

b21(n) ≤ c1N
2−r/2 exp(−2BN r/2).

5.4 Proof of Proposition 4

To study the term b22(n), we denote

F1[pρ(·|φ)](t) := Eρ[e
itX |Φ = φ] = W̃ρ(t cos φ, t sinφ),

the Fourier transform with respect to the first variable.

E[ρ̂η
j,k] = E[Gj,k(

Y√
η
,Φ)] = E[fη,δ

j,k (
Y√
η
)e−i(j−k)Φ]

=
1

π

∫ π

0
e−i(j−k)φ

∫
fη,δ

j,k (y)
√
ηpη

ρ(y
√
η|φ)dydφ

=
1

π

∫ π

0
e−i(j−k)φ 1

2π

∫
f̃η,δ

j,k (t)F1[
√
ηpη

ρ(·
√
η|φ)](t)dtdφ

=
1

π

∫ π

0
e−i(j−k)φ 1

2π

∫

|t|≤1/δ
f̃j,k(t)e

γt2F1[pρ(·|φ)](t)Ñη(t)dtdφ.

As Ñη(t) = e−γt2 and by using the Cauchy-Schwarz inequality we have

∣∣∣E[ρ̂η
j,k] − ρj,k

∣∣∣
2

=

∣∣∣∣∣
1

π

∫ π

0
e−i(j−k)φ 1

2π

∫

|t|>1/δ
f̃j,k(t)F1[pρ(·|φ)](t)dtdφ

∣∣∣∣∣

2

≤ 1

π

∫ π

0

(
1

2π

∫

|t|>1/δ

∣∣∣f̃j,k(t)W̃ρ(t cos φ, t sinφ)
∣∣∣dt
)2

dφ.

If 1/δ ≥ 2
√
N ≥ 2s with s =

√
j + k + 1, then whenever t ≥ 1/δ we get by Lemma 2

|f̃j,k(t)| = π2|t|lj,k(t/2)

≤ π|t|e− 1
4
(|t|−2s)2 .

On the other hand, by Propositions 1 and 2 we have

|W̃ρ(t cosφ, t sin φ)| ≤ A(
|t|
2

)e−β( |t|
2

)r

for β := B
(1+

√
B)2

in the case r = 2, or for arbitrary β < B and t large enough in the case

0 < r < 2. In both cases A is a polynom of degree 4 − r. We deduce the inequality

∣∣∣E[ρ̂η
j,k] − ρj,k

∣∣∣
2

≤ C

(∫ ∞

1
δ

t5−re−
1
4
(t−2s)2−β2−rtrdt

)2

≤ C(
1

δ
)12−4re−

1
2
( 1

δ
−2

√
N)2−β21−r( 1

δ
)r
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by Lemma 8 in [5], hence

b2(n)2 ≤ CN2(
1

δ
)12−4re−

1
2
( 1

δ
−2

√
N)2−β21−r( 1

δ
)r

which covers both cases in the proposition.

5.5 Proof of Proposition 5

Let us write σ2
j,k(n) := E

∣∣∣ρ̂η
j,k − E[ρ̂η

j,k]
∣∣∣
2
. We bound it by

σ2
j,k(n) = E

∣∣∣∣∣
1

n

n∑

ℓ=1

(
Gj,k(

Yℓ√
η
,Φℓ) − E[Gj,k(

Yℓ√
η
,Φℓ)]

)∣∣∣∣∣

2

=
1

n
E

∣∣∣∣Gj,k(
Y√
η
,Φ) − E[Gj,k(

Y√
η
,Φ)]

∣∣∣∣
2

≤ 1

n
E

∣∣∣∣Gj,k(
Y√
η
,Φ)

∣∣∣∣
2

. (46)

Proof of (31) For 0 < η ≤ 1/2, let us denote by Kδ the function with the following

Fourier transform K̃δ(t) = I(|t| ≤ 1
δ )eγt2 , then f̃η,δ

j,k = f̃j,k(t)K̃δ(t) and we have

σ2
j,k(n) ≤ 1

n
E

∣∣∣∣f
η,δ
j,k (

Y√
η
)e−i(j−k)Φ

∣∣∣∣
2

≤ 1

n
E

∣∣∣∣fj,k ∗Kδ(
Y√
η
)

∣∣∣∣
2

≤ 1

n
E

∣∣∣∣
∫
fj,k(t)Kδ(

Y√
η
− t)dt

∣∣∣∣
2

.

By using the Cauchy-Schwarz inequality

σ2
j,k(n) ≤ 1

n

∫
|fj,k(t)|2dtE

∫ ∣∣∣∣Kδ(
Y√
η
− t)

∣∣∣∣
2

dt

≤ 1

n

∫
|fj,k(t)|2dtE

1

2π

∫ ∣∣∣K̃δ(u)e
−iu Y√

η

∣∣∣
2

du

≤ 1

nπ
‖fj,k‖2

2

∫ 1/δ

0
e2γu2

du.

Then,

σ2(n) ≤ C

nπ

N−1∑

j+k=0

‖fj,k‖2
2

ηδ

1 − η
e

2γ

δ2 .
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By Lemma 4 we have
∑N−1

j+k=0 ‖fj,k‖2
2 ≤ C2N

17/6 thus

σ2(n) ≤ C1ηδN
17/6

nπ(1 − η)
e

2γ

δ2 .

Proof of (32) and (33) By (28), for 1/2 < η ≤ 1,

σ2
j,k(n) ≤ 1

n
E

∣∣∣∣f
η
j,k(

Y√
η
)e−i(j−k)Φ

∣∣∣∣
2

≤ 1

nπ

∫ π

0

∫ ∣∣∣fη
j,k(y)

∣∣∣
2√
ηpη

ρ(
√
ηy|φ)dydφ

≤ 1

nπ

∥∥∥fη
j,k

∥∥∥
2

∞

For 1/2 < η < 1, by Lemma 5,

σ2(n) ≤ C∞N1/3

nπ
e8γN .

For η = 1, by Lemma 6

σ2
j,k(n) ≤ 1

n

∫ π

0

∫
|fj,k(x)|2pρ(x, φ)dxdφ

≤ C

n
‖fj,k‖2

2

hence by Lemma 4,

σ2(n) ≤ C
C2N

17/6

n
.

5.6 Proof of Proposition 6

It is easy to see that

F
[
E[Ŵ η

h ]
]
(w) = W̃ρ(w)I(‖w‖ ≤ 1/h).

We have, for n large enough sn ≥ z0 and by (13)

‖Wρ‖2
D(sn) ≤ C(B, r)

∫

‖z‖>sn

‖z‖8−2r exp(−2β‖z‖r)dz

≤ C(B, r)

∫ 2π

0

∫ ∞

sn

t9−2r exp(−2βtr)dtdφ

≤ C1s
10−3r
n e−2βsr

n ,
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where β < B and for n large enough in the case 0 < r < 2, respectively β = B/(1 +
√
B)2

in the case r = 2. Now we write for the L2 bias of our estimator :

‖E[Ŵ η
h ] −Wρ‖2

D(sn) ≤ ‖E[Ŵ η
h ] −Wρ‖2

2 =
1

(2π)2
‖F
[
E[Ŵ η

h ]
]
− W̃ρ‖2

2

=
1

(2π)2

∫ ∣∣∣W̃ρ(w)
∣∣∣
2
I(‖w‖ > 1/h) dw

≤ C2(B, r)

(2π)2

∫

‖w‖>1/h
‖w‖2(4−r)e−21−rβ‖w‖r

dw

≤ C2h
3r−10e−

21−rβ
hr ,

by the assumption on our class and (14), for 0 < r < 2. The case r = 2 is similar.

As for the variance of our estimator :

V
[
Ŵ η

h

]
= E

[∥∥∥Ŵ η
h − E

[
Ŵ η

h

]∥∥∥
2

D(sn)

]

=
1

π2n

{
E

[∥∥∥∥K
η
h

(
[·,Φ] − Y√

η

)∥∥∥∥
2

D(sn)

]

−
∥∥∥∥E
[
Kn

h

(
[·,Φ] − Y√

η

)]∥∥∥∥
2

D(sn)

}
. (47)

On the one hand, by using two-dimensional Plancherel formula and the Fourier transform

shown above, we get :
∥∥∥∥E
[
Kn

h

(
[·,Φ] − Y√

η

)]∥∥∥∥
2

D(sn)

≤ π2

∫
|Wρ(w)|2dw ≤ π2. (48)

In the last inequality we have used the fact that ‖Wρ‖2
2 = Tr(ρ2) ≤ 1 where ρ is the density

matrix corresponding to the Wigner function Wρ. On the other hand, the dominant term

in the variance will be given by

E

[∥∥∥∥K
η
h

(
[·,Φ] − Y√

η

)∥∥∥∥
2

D(sn)

]

=

∫ π

0

∫ ∫

D(sn)

(
Kη

h([z, φ] − y/
√
η)
)2
dzpη

ρ(y, φ)dydφ

=

∫ π

0

∫

D(sn)

∫ (
Kη

h(u)
)2 √

ηpη
ρ(([z, φ] − u)

√
η, φ)dudzdφ

=

∫ (
Kη

h(u)
)2
∫

D(sn)

∫ π

0
pρ(·, φ) ∗NNη([z, φ] − u)dφdzdu

≤ M(η)πs2n

∫
(Kη

h(u))2du,
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using Lemma 6 below and the constant M(η) > 0 depending only on η, defined therein.

Indeed, let us note that
√
ηpη

ρ(·√η, φ) is the density of Y/
√
η = X +

√
(1 − η)/(2η)ε and

let us call NNη the Gaussian density of the noise as normalized in this last equation.

Let us first compute, by Plancherel formula, ‖Kη
h‖2

2 and get

‖Kη
h‖2

2 =
1

2π

∫
|K̃η

h(t)|2dt =
1

2π

∫

|t|≤1/h

t2

4Ñ2(t
√

(1 − η)/(2η))
dt

=
1

4π

∫ 1/h

0
t2 exp

(
t2

1 − η

2η

)
dt

=
1

4πh

η

1 − η
exp

(
1 − η

2ηh2

)
(1 + o(1)), as h→ 0.

We replace in the second order moment, then as h→ 0

E

[∥∥∥∥K
η
h

(
[·,Φ] − Y√

η

)∥∥∥∥
2

D(sn)

]
≤ M(η)s2n

16γh
exp

(
2γ

h2

)
(1 + o(1)). (49)

The result about the variance of the estimator is obtained from (47)-(49).

Lemma 6. For every ρ ∈ R(B, r) and 0 < η < 1, we have that the corresponding probability

density pρ satisfies

0 ≤
∫ π

0
pρ(·, φ) ∗NNη(x)dφ ≤M(η),

0 ≤
∫ π

0
pρ(x, φ)dφ ≤ C

for all x ∈ R eventually depending on φ, where M(η) > 0 is a constant depending only on

fixed η and C > 0.

Démonstration. Indeed, using inverse Fourier transform and the fact that
∣∣∣W̃ρ(w)

∣∣∣ ≤ 1 we

get :
∣∣∣∣
∫ π

0
pρ(·, φ) ∗NNη(x)dφ

∣∣∣∣

≤
∣∣∣∣
∫ π

0

1

2π

∫
e−itxF1[pρ(·, φ)](t) · ÑNη

(t)dtdφ

∣∣∣∣

≤ c(η)

∫ π

0

∫ ∣∣∣W̃ρ(t cosφ, t sinφ)
∣∣∣ exp

(
− t

2(1 − η)

4η

)
dtdφ

≤ c(η)

∫
1

‖w‖
∣∣∣W̃ρ(w)

∣∣∣ exp

(
−‖w‖2(1 − η)

4η

)
dw ≤M(η),

where c(η), M(η) are positive constants depending only on η ∈ (0, 1).
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