15 research outputs found

    Synthesis, Self-Assembly and In Vitro Cellular Uptake Kinetics of Nanosized Drug Carriers Based on Aggregates of Amphiphilic Oligomers of N-Vinyl-2-pyrrolidone

    Get PDF
    Development of nanocarrier-based drug delivery systems is a major breakthrough in pharmacology, promising targeted delivery and reduction in drug toxicity. On the cellular level, encapsulation of a drug substantially affects the endocytic processes due to nanocarrier–membrane interaction. In this study we synthesized and characterized nanocarriers assembled from amphiphilic oligomers of N-vinyl-2-pyrrolidone with a terminal thiooctadecyl group (PVP-OD). It was found that the dissolution free energy of PVP-OD depends linearly on the molecular mass of its hydrophilic part up to [Formula: see text] = 2 × 10(4), leading to an exponential dependence of critical aggregation concentration (CAC) on the molar mass. A model hydrophobic compound (DiI dye) was loaded into the nanocarriers and exhibited slow release into the aqueous phase on a scale of 18 h. Cellular uptake of the loaded nanocarriers and that of free DiI were compared in vitro using glioblastoma (U87) and fibroblast (CRL2429) cells. While the uptake of both DiI/PVP-OD nanocarriers and free DiI was inhibited by dynasore, indicating a dynamin-dependent endocytic pathway as a major mechanism, a decrease in the uptake rate of free DiI was observed in the presence of wortmannin. This suggests that while macropinocytosis plays a role in the uptake of low-molecular components, this pathway might be circumvented by incorporation of DiI into nanocarriers

    A degradable inverse vulcanized copolymer as a coating material for urea produced under optimized conditions

    Get PDF
    Global enhancement of crop yield is achieved using chemical fertilizers; however, agroeconomy is affected due to poor nutrient uptake efficacy (NUE), which also causes environmental pollution. Encapsulating urea granules with hydrophobic material can be one solution. Additionally, the inverse vulcanized copolymer obtained from vegetable oils are a new class of green sulfurenriched polymer with good biodegradation and better sulfur oxidation potential, but they possess unreacted sulfur, which leads to void generations. In this study, inverse vulcanization reaction conditions to minimize the amount of unreacted sulfur through response surface methodology (RSM) is optimized. The copolymer obtained was then characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR confirmed the formation of the copolymer, TGA demonstrated that copolymer is thermally stable up to 200â—¦C temperature, and DSC revealed the sulfur conversion of 82.2% (predicted conversion of 82.37%), which shows the goodness of the model developed to predict the sulfur conversion. To further maximize the sulfur conversion, 5 wt% diisopropenyl benzene (DIB) as a crosslinker is added during synthesis to produce terpolymer. The urea granule is then coated using terpolymer, and the nutrient release longevity of the coated urea is tested in distilled water, which revealed that only 65% of its total nutrient is released after 40 days of incubation. The soil burial of the terpolymer demonstrated its biodegradability, as 26% weight loss happens in 52 days of incubation. Thus, inverse vulcanized terpolymer as a coating material for urea demonstrated far better nutrient release longevity compared with other biopolymers with improved biodegradation; moreover, these copolymers also have potential to improve sulfur oxidation

    One-Pot Synthesis of Colloidal Hybrid Au (Ag)/ZnO Nanostructures with the Participation of Maleic Acid Copolymers

    No full text
    One-pot synthesis of colloidal Au/ZnO and Ag/ZnO nanohybrid structures was carried out. The copolymers of maleic acid—poly(N-vinyl-2-pyrrolidone-alt-maleic acid), poly(ethylene-alt-maleic acid), or poly(styrene-alt-maleic acid) were used as templates for the sorption of cations of metals-precursors and stabilization of the resulting nanoheterostructures. Simultaneous production of two types of nanoparticles has been implemented under mild conditions in an aqueous alkaline medium and without additional reagents. Equimolar ratios of the metal cations and appropriate load on all copolymers were used: molar ratio of maleic acid monomeric units of copolymer/gold (silver)cations/zinc cations was 1/0.15/0.23 (1/0.3/0.15). The process of obtaining the heterostructures was studied using UV-Vis spectroscopy. The kinetics of the formation of heterostructures was influenced by the nature of the maleic acid copolymer and noble metal cations used. A high reaction rate was observed in the case of using zinc and gold cations-precursors and a copolymer of maleic acid with N-vinylpyrrolidone as a stabilizer of nanoparticles. The structure of the synthesized polymer-stabilized heterostructures was studied using instrumental methods of analysis—XPS, FTIR, PXRD, and TEM. Under the conditions used, stable colloidal solutions of heterodimers were obtained, and such structure can be converted to a solid state and back without loss of properties

    Polyphenylenepyridines Based on Acetylaromatic Compounds

    No full text
    Nitrogen-containing polyphenylene type polymers containing pyridine rings were synthesized. The polymer-forming reaction is based on the interaction of diacetylarylene and triethylorthoformate with the formation of a pyrylium salt and subsequent treatment of the intermediate product with ammonia. The optimal ratios of the reagents for the formation of the pyridine fragment were determined. The mechanism of the main reaction is discussed. The formation of the pyridine ring and phentriyl (1,3,5-triphenylsubstituted benzene) fragments was confirmed using 1H NMR data of the example of model reactions. After heating at a temperature of 450 °C, when a more complete polycondensation process occurs, the polymers reach high values of thermal characteristics—10% weight loss in an inert atmosphere corresponds to 600 °C. The structure of the synthesized polymers was confirmed using elemental analysis, IR, XPS, and EPR spectroscopy. The conjugation length in cross-linked polyphenylene pyridines can be controlled by varying the arylene bridge groups between the phentriyl fragments, which opens up opportunities for the development of new composite materials for electrical applications

    The Effect of Ca, Sr, and Ba Chloride Complexes with Dibenzo-18-Crown-6 Ether as Catalysts on the Process Criteria for the Efficiency of Cumene Oxidation (the First Stage in the Chain of Polymer Composite Production)

    No full text
    A study was made on the effect of Ca, Sr, and Ba chloride complexes with dibenzo-18-crown-6 ether as catalysts on the process criteria of the efficiency of industrial cumene oxidation using kinetic modeling. It is the first stage in the process chain of polymer composite production. The kinetic scheme of the process is made of classical reactions of the radical chain mechanism (reactions of initiation, chain propagation, and chain termination), molecular reactions, reactions of formation of intermediate adducts “component of the reaction mixture—catalyst” and their decomposition, as well as reactions that take into account the specifics of the catalyst used: (1) formation of planar catalyst complexes with various substances; (2) formation of acetophenone along the catalytic path; (3) hydration of the intermediate adduct “α-methylstyrene—catalyst” to the required alcohol. It is shown that the kinetic model fully reproduces the experimental time dependencies of the cumene hydroperoxide concentration in the cumene oxidation and cumene hydroperoxide decomposition. Using the kinetic model, computational experiments were carried out, as a result of which the following conclusions were made: (1) among the considered catalysts, the complex of Sr chloride with dibenzo-18-crown-6 ether should be recognized as the best, provided that it is used at temperatures of 393–413 K and an initial concentration < 2 mmol/L; (2) to ensure selectivity comparable to the selectivity of a non-catalytic process, it is necessary to conduct the catalytic process at a lowest possible initial concentration of any of the considered catalysts

    Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector

    No full text
    A method was developed for the conjugation of aminopropyl spacer-bearing carbohydrates with epoxy groups on the crown of nanoparticles consisting of a copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl ether in basic buffer, opening prospects for the design of vectorized nanocomposite drug forms. A conjugate of the above copolymer and trisaccharide A, a synthetic blood group antigen, was synthesized. Meglumine was used to bind any unreacted epoxide groups of the allyl glycidyl fragment. One- and two-dimensional NMR spectroscopy showed quantitative opening of the epoxide ring as a result of carbohydrate immobilization. By integrating the characteristic signals in the 1H NMR spectrum, we determined the molar ratio of the immobilized vector and meglumine, as well as the composition and number-average molecular weight of the carrier copolymer. The results obtained point to the interesting possibilities in the further study of the polymer&ndash;carbohydrate ligand system as a platform for the development of several drug carriers and theranostics based on them

    Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector

    No full text
    A method was developed for the conjugation of aminopropyl spacer-bearing carbohydrates with epoxy groups on the crown of nanoparticles consisting of a copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl ether in basic buffer, opening prospects for the design of vectorized nanocomposite drug forms. A conjugate of the above copolymer and trisaccharide A, a synthetic blood group antigen, was synthesized. Meglumine was used to bind any unreacted epoxide groups of the allyl glycidyl fragment. One- and two-dimensional NMR spectroscopy showed quantitative opening of the epoxide ring as a result of carbohydrate immobilization. By integrating the characteristic signals in the 1H NMR spectrum, we determined the molar ratio of the immobilized vector and meglumine, as well as the composition and number-average molecular weight of the carrier copolymer. The results obtained point to the interesting possibilities in the further study of the polymer–carbohydrate ligand system as a platform for the development of several drug carriers and theranostics based on them
    corecore