601 research outputs found

    A Coq-based synthesis of Scala programs which are correct-by-construction

    Full text link
    The present paper introduces Scala-of-Coq, a new compiler that allows a Coq-based synthesis of Scala programs which are "correct-by-construction". A typical workflow features a user implementing a Coq functional program, proving this program's correctness with regards to its specification and making use of Scala-of-Coq to synthesize a Scala program that can seamlessly be integrated into an existing industrial Scala or Java application.Comment: 2 pages, accepted version of the paper as submitted to FTfJP 2017 (Formal Techniques for Java-like Programs), June 18-23, 2017, Barcelona , Spai

    Efficient approximate unitary t-designs from partially invertible universal sets and their application to quantum speedup

    Full text link
    At its core a tt-design is a method for sampling from a set of unitaries in a way which mimics sampling randomly from the Haar measure on the unitary group, with applications across quantum information processing and physics. We construct new families of quantum circuits on nn-qubits giving rise to ε\varepsilon-approximate unitary tt-designs efficiently in O(n3t12)O(n^3t^{12}) depth. These quantum circuits are based on a relaxation of technical requirements in previous constructions. In particular, the construction of circuits which give efficient approximate tt-designs by Brandao, Harrow, and Horodecki (F.G.S.L Brandao, A.W Harrow, and M. Horodecki, Commun. Math. Phys. (2016).) required choosing gates from ensembles which contained inverses for all elements, and that the entries of the unitaries are algebraic. We reduce these requirements, to sets that contain elements without inverses in the set, and non-algebraic entries, which we dub partially invertible universal sets. We then adapt this circuit construction to the framework of measurement based quantum computation(MBQC) and give new explicit examples of nn-qubit graph states with fixed assignments of measurements (graph gadgets) giving rise to unitary tt-designs based on partially invertible universal sets, in a natural way. We further show that these graph gadgets demonstrate a quantum speedup, up to standard complexity theoretic conjectures. We provide numerical and analytical evidence that almost any assignment of fixed measurement angles on an nn-qubit cluster state give efficient tt-designs and demonstrate a quantum speedup.Comment: 25 pages,7 figures. Comments are welcome. Some typos corrected in newest version. new References added.Proofs unchanged. Results unchange

    E-Cadherin Force Transmission and Stiffness Sensing

    Get PDF
    E-cadherin is the chief mediator of cell-cell adhesion between epithelial cells and is a known mechanosensor. Force transmission and stiffness sensing are two crucial aspects of E-cadherin mechanobiology. E-cadherin has an extracellular adhesive region, a transmembrane region and an intracellular region that binds to adhesion-associated proteins. Here, we assessed how different factors affect the level of force transmission (i) from inside the cell such as adhesion-associated proteins, (ii) on the cell membrane, such as growth factor receptors and (iii) outside the cell, such as different binding partners in adhesion. To study the level of force transmission inside the cell, we studied the role of vinculin and α-catenin in transmitting endogenous forces at cell-cell contacts. We found that vinculin, not α-catenin, is pivotal for transmitting high endogenous forces at cell-cell contacts through E-cadherin. To study how the level of force transmission is affected by factors on the cell membrane, we investigated the effect of EGFR on the intercellular forces transmitted at cell-cell contacts. We found that EGFR activity significantly affects the level of intercellular forces. In order to understand how the level of force transmission depends on binding partners from outside the cell, we studied homophilic and heterophilic interactions of cadherins. We found that the intercellular tension for the heterophilic E-cad/N-cad interaction is higher than the homophilic E-cad/E-cad interaction. Additionally, we also devised a modified traction force microscopy method using a novel, simple strategy for coincident immunofluorescence and traction force microscopy. Moreover, E-cadherin adhesions reside in a microenvironment that is comprised of adjacent epithelial cells. We found that E-cadherin adhesions change their organization depending on the magnitude of the epithelial cell-like elasticity of their microenvironment. Such E-cadherin adhesions were of two types: linear shaped adhesions and irregularly shaped adhesions. We found that linear adhesions were dependent on formin-dependent linear actin bundles and irregular adhesions were dependent on high local actin density. Thus, we found that actin is a crucial determinant of how E-cadherin adhesions are organized in response to cell-like soft microenvironments. All these findings have important implications for tissue development (morphogenesis), dysregulation (such as during cancer progression) as well as tissue engineering

    Enhanced RSA Cryptosystem based on Multiplicity of Public and Private Keys

    Get PDF
    Security is one of the most important concern to the information and data sharing for companies, banks, organizations and government facilities. RSA is a public cryptographic algorithm that is designed specifically for authentication and data encryption. One of the most powerful reasons makes RSA more secure is that the avoidance of key exchange in the encryption and decryption processes. Standard RSA algorithm depends on the key length only to protect systems. However, RSA key is broken from time to another due to the development of computers hardware such as high speed processors and advanced technology. RSA developers have increased a key length or size of a key periodically to maintain a high security and privacy to systems that are protected by the RSA. In this paper, a method has been designed and implemented to strengthen the RSA algorithm by using multiple public and private keys. Therefore, in this method the security of RSA not only depends on the key size, but also relies on the multiplicity of public and private keys

    Shopping Discount Alert System

    Get PDF
    The Web technologies have been very advanced now. They are incorporated with RFID, GSM, and mobile technologies in enabling the Web functions be accessed more widely. Hence, the business functions are accelerated. This study takes the advantages of such the advancements in assisting marketing purposes. Consequently, a system that alerts users of sales in malls based on their locations is developed, and is named Shopping Discount Alert System (SDAS). UML and Java are used in designing and developing it from start to finish. It sends the advertisements to users' mobile phones, so that the information is pervasive. The Shopping discount alert system has been functionally tested, besides its interface. Results show that the Shopping discount alert system runs well as intended, besides ensuring that the users are happy with the idea. It is anticipated that the Shopping discount alert system could reduce the cost for promotions in a long run

    A Comparative Analysis of Data Mining Techniques on Breast Cancer Diagnosis Data using WEKA Toolbox

    Get PDF
    Abstract—Breast cancer is considered the second most common cancer in women compared to all other cancers. It is fatal in less than half of all cases and is the main cause of mortality in women. It accounts for 16% of all cancer mortalities worldwide. Early diagnosis of breast cancer increases the chance of recovery. Data mining techniques can be utilized in the early diagnosis of breast cancer. In this paper, an academic experimental breast cancer dataset is used to perform a data mining practical experiment using the Waikato Environment for Knowledge Analysis (WEKA) tool. The WEKA Java application represents a rich resource for conducting performance metrics during the execution of experiments. Pre-processing and feature extraction are used to optimize the data. The classification process used in this study was summarized through thirteen experiments. Additionally, 10 experiments using various different classification algorithms were conducted. The introduced algorithms were: Naïve Bayes, Logistic Regression, Lazy IBK (Instance-Bases learning with parameter K), Lazy Kstar, Lazy Locally Weighted Learner, Rules ZeroR, Decision Stump, Decision Trees J48, Random Forest and Random Trees. The process of producing a predictive model was automated with the use of classification accuracy. Further, several experiments on classification of Wisconsin Diagnostic Breast Cancer and Wisconsin Breast Cancer, were conducted to compare the success rates of the different methods. Results conclude that Lazy IBK classifier k-NN can achieve 98% accuracy among other classifiers. The main advantages of the study were the compactness of using 13 different data mining models and 10 different performance measurements, and plotting figures of classifications errors

    Mitigating photon loss in linear optical quantum circuits:classical postprocessing methods outperforming postselection

    Get PDF
    Photon loss rates set an effective upper limit on the size of computations that can be run on current linear optical quantum devices. We present a family of techniques to mitigate the effects of photon loss on both output probabilities and expectation values derived from noisy linear optical circuits composed of an input of nn photons, an mm-mode interferometer, and mm single photon detectors. Central to these techniques is the construction of objects called recycled probabilities. Recycled probabilities are constructed from output statistics affected by loss, and are designed to amplify the signal of the ideal (lossless) probabilities. Classical postprocessing techniques then take recycled probabilities as input and output a set of loss-mitigated probabilities, or expectation values. We provide analytical and numerical evidence that these methods can be applied, up to large sample sizes, to produce more accurate outputs than those obtained from postselection - which is currently the standard method of coping with photon loss when sampling from discrete variable linear optical quantum circuits. In contrast, we provide strong evidence that the popular zero noise extrapolation technique cannot improve on on the performance of postselection for any photon loss rate

    An Investigation of the Impact of Forming Process Parameters in Single Point Incremental Forming Using Experimental and Numerical Verification

    Get PDF
    Incremental sheet forming (ISF) is an innovative cold forming operation and has enticed great interests owing to its flexibility and capability to manufacture various complex 3D shapes with low costs and minimum requirements. Single point incremental forming (SPIF) is the most popular type of ISF process and has high quality and less occurrence of defects for the formed products if the operating parameters are achieved and evaluated with high precision. In this study, the impact of tool diameter and forming angle on the forming force, thickness distribution, thinning ratio, effective plastic strain, forming depth and fracture behaviour was explored. AA1050 aluminium alloy and DC04 carbon steel were employed to produce a truncated cone in accordance with the SPIF process. A 3D finite element model was required to achieve a well-established investigation. The SPIF of a truncated cone numerical model was adopted to build a model with the same conditions as of the experimental work with aid of ANSYS software version 18 through using the workbench LS-DYNA model. The sheet metal modelling was carried out in accordance the Cowper Symonds power law hardening by taking the behaviour of the material as elastic–plastic, and the anisotropic properties were assumed to simulate the plasticity behaviour for two sheet metals. Results indicate that the DC04 carbon steel has a higher forming force, minimum thickness and lower thinning ratio compared with AA1050 aluminium alloy under the same operating conditions
    corecore