436 research outputs found
Interferometric Mapping of Magnetic fields: NGC2071IR
We present polarization maps of NGC2071IR from thermal dust emission at 1.3
mm and from CO J= line emission. The observations were obtained using
the Berkeley-Illinois-Maryland Association array in the period 2002-2004. We
detected dust and line polarized emission from NGC2071IR that we used to
constrain the morphology of the magnetic field. From CO J= polarized
emission we found evidence for a magnetic field in the powerful bipolar outflow
present in this region. We calculated a visual extinction mag from our dust observations. This result, when compared with early
single dish work, seems to show that dust grains emit polarized radiation
efficiently at higher densities than previously thought. Mechanical alignment
by the outflow is proposed to explain the polarization pattern observed in
NGC2071IR, which is consistent with the observed flattening in this source.Comment: 17 pages, 4 Figures, Accepted for publication in Ap
The Detection of Cold Dust in Cas A: Evidence for the Formation of Metallic Needles in the Ejecta
Recently, Dunne et al. (2003) obtained 450 and 850 micron SCUBA images of
CasA, and reported the detection of 2-4 M_sun of cold, 18K, dust in the
remnant. Here we show that their interpretation of the observations faces
serious difficulties. Their inferred dust mass is larger than the mass of
refractory material in the ejecta of a 10 to 30 M_sun star. The cold dust model
faces even more difficulties if the 170 micron observations of the remnant are
included in the analysis, decreasing the cold dust temperature to ~ 8K, and
increasing its mass to > 20 M_sun. We offer here a more plausible
interpretation of their observation, in which the cold dust emission is
generated by conducting needles with properties that are completely determined
by the combined submillimeter and X-ray observations of the remnant. The
needles consist of metallic whiskers with <1% of embedded impurities that may
have condensed out of blobs of material that were expelled at high velocities
from the inner metal-rich layers of the star in an asymmetric explosion. The
needles are collisionally heated by the shocked gas to a temperature of 8K.
Taking the destruction of needles into account, a dust mass of only 1E-4 to
1E-3M_sun is needed to account for the observed SCUBA emission. Aligned in the
magnetic field, needles may give rise to observable polarized emission. The
detection of submillimeter polarization will therefore offer definitive proof
for a needle origin for the cold dust emission. Supernovae may still be proven
to be important sources of interstellar dust, but the evidence is still
inconclusive.Comment: 18 pages including 4 figures. Accepted for publication in the ApJ.
Missing reference adde
The vanadium isotope composition of Mars: Implications for planetary differentiation in the early solar system
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D., V., Magna, T., Mezger, K., & Auro, M. The vanadium isotope composition of Mars: Implications for planetary differentiation in the early solar system. Geochemical Perspectives Letters, 15, (2020): 35-39, doi:10.7185/geochemlet.2032.The V isotope composition of martian meteorites reveals that Bulk Silicate Mars (BSM) is characterised by ÎŽ51Vâ=ââ1.026â±â0.029 â° (2 s.e.) and is thus âŒ0.06 â° heavier than chondrites and âŒ0.17 â° lighter than Bulk Silicate Earth (BSE). Based on the invariant V isotope compositions of all chondrite groups, the heavier V isotope compositions of BSE and BSM relative to chondrites are unlikely to originate from mass independent isotope effects or evaporation/condensation processes in the early Solar System. These differences are best accounted for by mass dependent fractionation during core formation. Assuming that bulk Earth and Mars both have a chondritic V isotopic compostion, mass balance considerations reveal V isotope fractionation factors Î51Vcore-mantle as substantial as â0.6 â° for both planets. This suggests that V isotope systematics in terrestrial and extraterrestrial rocks potentially constitutes a powerful new tracer of planetary differentiation processes accross the Solar System.This work was funded by NASA Emerging Worlds grant NNX16AD36G to SGN. Samples were acquired with funds from the Helmholtz Association through the research alliance HA 203 âPlanetary Evolution and Lifeâ to KM. TM contributed through the Strategic Research Plan of the Czech Geological Survey (DKRVO/ÄGS 2018-2022). KM acknowledges support through NCCR PlanetS supported by the Swiss National Science Foundation. We thank Jurek Blusztajn for support in the WHOI Plasma Facility
Spitzer/IRS Imaging and Spectroscopy of the luminous infrared galaxy NGC 6052 (Mrk 297)
We present photometric and spectroscopic data of the interacting starburst
galaxy NGC 6052 obtained with the Spitzer Space Telescope. The mid-infrared
(MIR) spectra of the three brightest spatially resolved regions in the galaxy
are remarkably similar and are consistent with dust emission from young nearly
coeval stellar populations. Analysis of the brightest infrared region of the
system, which contributes ~18.5 % of the total 16\micron flux, indicates that
unlike similar off-nuclear infrared-bright regions found in Arp 299 or NGC
4038/9, its MIR spectrum is inconsistent with an enshrouded hot dust (T > 300K)
component. Instead, the three brightest MIR regions all display dust continua
of temperatures less than ~ 200K. These low dust temperatures indicate the dust
is likely in the form of a patchy screen of relatively cold material situated
along the line of sight. We also find that emission from polycyclic aromatic
hydrocarbons (PAHs) and the forbidden atomic lines is very similar for each
region. We conclude that the ionization regions are self-similar and come from
young (about 6 Myr) stellar populations. A fourth region, for which we have no
MIR spectra, exhibits MIR emission similar to tidal tail features in other
interacting galaxies.Comment: 20 pages in preprint form, estimated 7 pages in ApJ Aeptember 10,
2007, v666n 2 issue, six encapsulated postscript figure
Neutralino dark matter vs galaxy formation
Neutralino dark matter may be incompatible with current cold dark matter
models with cuspy dark halos, because excessive synchrotron radiation may
originate from neutralino annihilations close to the black hole at the galactic
center.Comment: 6 pages, 3 figures, talk given at "Sources and detection of dark
matter in the Universe", Marina del Rey, CA, February 23-25, 200
Landscape of stimulation-responsive chromatin across diverse human immune cells.
A hallmark of the immune system is the interplay among specialized cell types transitioning between resting and stimulated states. The gene regulatory landscape of this dynamic system has not been fully characterized in human cells. Here we collected assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing data under resting and stimulated conditions for up to 32 immune cell populations. Stimulation caused widespread chromatin remodeling, including response elements shared between stimulated B and T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-responsive elements from distinct cell types, highlighting the importance of these cell states in autoimmunity. Allele-specific read mapping identified variants that alter chromatin accessibility in particular conditions, allowing us to observe evidence of function for a candidate causal variant that is undetected by existing large-scale studies in resting cells. Our results provide a resource of chromatin dynamics and highlight the need to characterize the effects of genetic variation in stimulated cells
Elastic turbulence in von Karman swirling flow between two disks
We discuss the role of elastic stress in the statistical properties of
elastic turbulence, realized by the flow of a polymer solution between two
disks. The dynamics of the elastic stress are analogous to those of a small
scale fast dynamo in magnetohydrodynamics, and to those of the turbulent
advection of a passive scalar in the Batchelor regime. Both systems are
theoretically studied in literature, and this analogy is exploited to explain
the statistical properties, the flow structure, and the scaling observed
experimentally. Several features of elastic turbulence are confirmed
experimentally and presented in this paper: (i) saturation of the rms of the
vorticity and of velocity gradients in the bulk, leading to the saturation of
the elastic stress; (ii) large rms of the velocity gradients in the boundary
layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with
exponential tails, which indicate intermittency; PDF of the acceleration
exhibit well-pronounced exponential tails too; (iv) a new length scale, i.e the
thickness of the boundary layer, as measured from the profile of the rms of the
velocity gradient, is found to be relevant and much smaller than the vessel
size; (v) the scaling of the structure functions of the vorticity, velocity
gradients, and injected power is found to be the same as that of a passive
scalar advected by an elastic turbulent velocity field.Comment: submitted to Physics of Fluids; 31 pages, 29 figures (resolution
reduced to screen quality
Evidence for a Massive Protocluster in S255N
S255N is a luminous far-infrared source that contains many indications of
active star formation but lacks a prominent near-infrared stellar cluster. We
present mid-infrared through radio observations aimed at exploring the
evolutionary state of this region. Our observations include 1.3mm continuum and
spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm
water maser data, and multicolor IRAC images from the Spitzer Space Telescope.
The cometary morphology of the previously-known UCHII region G192.584-0.041 is
clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm
continuum emission has been resolved into three compact cores, all of which are
dominated by dust emission and have radii < 7000AU. The mass estimates for
these cores range from 6 to 35 Msun. The centroid of the brightest dust core
(SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region
and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1
also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young
hot core. We find spatial and kinematic evidence that SMA1 may contain further
multiplicity, with one of the components coincident with a newly-detected H2O
maser. There are no mid-infrared point source counterparts to any of the dust
cores, further suggesting an early evolutionary phase for these objects. The
dominant mid-infrared emission is a diffuse, broadband component that traces
the surface of the cometary UCHII region but is obscured by foreground material
on its southern edge. An additional 4.5 micron linear feature emanating to the
northeast of SMA1 is aligned with a cluster of methanol masers and likely
traces a outflow from a protostar within SMA1. Our observations provide direct
evidence that S255N is forming a cluster of intermediate to high-mass stars.Comment: 34 pages, 11 figures, accepted for publication in The Astronomical
Journa
Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting
We present a new multi-component spectral energy distribution (SED)
decomposition method and use it to analyze the ultraviolet to millimeter
wavelength SEDs of a sample of dusty infrared-luminous galaxies. SEDs are
constructed from spectroscopic and photometric data obtained with the Spitzer
Space Telescope, in conjunction with photometry from the literature. Each SED
is decomposed into emission from populations of stars, an AGN accretion disk,
PAHs, atomic and molecular lines, and distributions of graphite and silicate
grains. Decompositions of the SEDs of the template starburst galaxies NGC7714
and NGC2623 and the template AGNs PG0804+761 and Mrk463 provide baseline
properties to aid in quantifying the strength of star-formation and accretion
in the composite systems NGC6240 and Mrk1014. We find that obscured radiation
from stars is capable of powering the total dust emission from NGC6240,
although we cannot rule out a contribution from a deeply embedded AGN visible
only in X-rays. The decomposition of Mrk1014 is consistent with ~65% of its
power emerging from an AGN and ~35% from star-formation. We suggest that many
of the variations in our template starburst SEDs may be explained in terms of
the different mean optical depths through the clouds of dust surrounding the
young stars within each galaxy. Prompted by the divergent far-IR properties of
our template AGNs, we suggest that variations in the relative orientation of
their AGN accretion disks with respect to the disks of the galaxies hosting
them may result in different amounts of AGN-heated cold dust emission emerging
from their host galaxies. We estimate that 30-50% of the far-IR and PAH
emission from Mrk1014 may originate from such AGN-heated material in its host
galaxy disk.Comment: 27 pages, 12 figures. Accepted for publication in the Ap
Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex
We present here the continuum submillimeter maps of the molecular cloud
around the M42 Nebula in the Orion region. These have been obtained in four
wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter
balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a
distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to
the high sensitivity to faint surface brightness gradients, we have found
several cold condensations with temperatures ranging from 12 to 17 K, within 3
parsecs of the dense ridge. The statistical analysis of the temperature and
spectral index spatial distribution shows an evidence of an inverse correlation
between these two parameters. Being invisible in the IRAS 100 micron survey,
some cold clouds are likely to be the seeds for future star formation activity
going on in the complex. We estimate their masses and we show that two of them
have masses higher than their Jeans masses, and may be gravitationally
unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres
- âŠ