83 research outputs found

    Femtosecond inscription of the first order Bragg gratings in pure fused silica

    Get PDF
    The fabrication of sub-micron periodic structures beyond diffraction limit is a major motivation for the present paper. We describe the fabrication of the periodic structure of 25 mm long with a pitch size of 260 nm which is less than a third of the wavelength used. This is the smallest reported period of the periodic structure inscribed by direct point-by-point method. A prototype of the add-drop filter, which utilizes such gratings, was demonstrated in one stage fabrication process of femtosecond inscription, in the bulk fused silica

    Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma

    Get PDF
    We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor

    Low-loss waveguides fabricated by femtosecond chirped-pulse oscillator

    Get PDF
    Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks

    Mid-infrared channel waveguides in RbPb⁠2Cl⁠5 crystal inscribed by femtosecond laser pulses

    Get PDF
    Tubular cladding waveguide was inscribed in crystal volume by a femtosecond laser operating at 0.8 μm. The waveguide sustains a single leaking mode at wavelength of 3.39 μm. Propagation losses were investigated experimentallyand theoretically at wavelengths of 1.58 μm and 3.39 μm. Measured losses were found to be as lowas 1.4 dB/cm at 1.58 μm and 5.1 dB/cm at 3.39 μm. Complex propagation constants for leaking modes were obtainedby numerical mode analysis. It was found, that mode leakage is a major factor of losses at wavelength of3.39 μm

    Adaptive modeling of the femtosecond inscription in silica

    Get PDF
    We present an adaptive mesh approach to high performance comprehensive investigation of dynamics of light and plasma pattens during the process of direct laser inscription. The results reveal extreme variations of spatial and temporal scales and tremendous complexity of these patterns which was not feasible to study previously

    Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm

    Get PDF
    A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant

    UV femtosecond laser inscribes a 300 nm period nanostructure in a pure fused silica

    Get PDF
    We report on the first recording of a periodic structure of ∼150 nm pitch in a permanently moving sample of a pure fused silica using the tightly focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses. © 2007 IOP Publishing Ltd

    Optical turbulence and spectral condensate in long-fiber lasers

    Get PDF
    We study optical wave turbulence using as a particular example recently created ultralong-fiber laser. We show that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fiber laser performance. For a normal dispersion, we observe an intermediate state with an extremely narrow spectrum condensate, which experiences an instability and a sharp transition to a strongly fluctuating regime with a wide spectrum and increased probability of spontaneous generation of large-amplitude pulses

    Line-by-line fiber Bragg grating made by femtosecond laser

    Get PDF
    In this letter, we report on the inscription of a fourth-order fiber Bragg grating made line-by-line in the optical fiber using a femtosecond laser. Strong Bragg resonance (~17 dB) and low insertion loss (~0.5 dB) were obtained with only 2000 periods. Measured refractive index change of these inscribed lines reaches up to 7 × 10-3. The grating was fully characterized and the low insertion loss together with low polarization-dependent loss were realized compared to gratings made by the point-by-point method. The high temperature annealing experiment shows the grating can survive up to at least 800°C
    corecore