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ABSTRACT

We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in
ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of
a programmable graphics processor.
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1. INTRODUCTION

Nonlinear wave equation in the form of the Generalised Non-Linear Schrödinger Equation (GNLSE) is a generic
mathematical model describing narrow bandwidth wave propagation in envelope approximation. In this paper we
consider a parallel numerical solution for a specific model which describes femtosecond laser pulse propagation in
transparent media. In this model, GNLSE is coupled to the Drude model of plasma resulting from multi-photon
and avalanche ionisation processes [1, 2, 3]. However our approach can be extended to similar models.

We compare performance of the multithreaded parallel code implemented for Nvidia Graphics Processing
Units (GPU) using CUDA programming interface [4] with a serial CPU version similar to that described in
[1, 2]. Coupling between the GNLSE and the Drude model of plasma results in impossible straightforward
parallel implementation of such model due to non-locality. Hence, efficient use of GPU’s parallel resources
requires radical revision of the current pipelined method presented in [1, 2].

Parallel solution of NLS like systems have been discussed previously by Zoldi in [5] for large scale problems,
where parallelization of the Fast Fourier Transform (FFT) is addressed. Traditionally, numerical solution of
GNLSE-type problems i.e. partial differential equations comprising linear differential operator and local nonlinear
terms is addressed by operator splitting techniques whereby a problem specific succession of linear and nonlinear
operators approximate the original equation [6, 7]. Solution of linear problem often referred to as a linear step is
usually efficiently performed using spectral methods which often have efficient parallel numerical implementations
such as FFT. Efficiency of spectral methods results from reducing a solution discretised linear partial differential
equation as a matrix inversion problem into a set of trivial uncoupled equations in corresponding spectral domain.
Similarly, nonlinear problem, or nonlinear step, is usually already local i.e. already represents a set of uncoupled
equations. Thus operator splitting makes possible efficient parallel implementations for equations with local
nonlinearities as shown e.g. in [5].

In this paper we consider a more complicated model which appears in describing ultrashort laser pulse
propagation in transparent media (see e.g. [8]). Typical applications of such phenomenon are femtosecond (fs)
laser inscription for microfabrication and micro-machining [3]. A fundamental difference of relevant mathematical
models to NLSE equations is in the nature of nonlinear terms which are nonlocal in time due to peculiar
interaction of paser light with plasma. This paper addresses an elimination of numerical bottleneck associated
with nonlocal nature of the nonlinear terms in the wave equation. A conventional operator splitting technique
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is exploited to effitiently deal with the linear operator while special attention is paid to constructing an efficient
parallel method of integration of the nonlinear operator. We adopt the split-step Fourier method for solution of
GNLSE. Since the typical problem size of 104 × 104 fits to the GPU memory well developed existing numerical
implementations are used such as an optimised off-the shelf FFT.

2. THEORETICAL MODEL

High intensity laser field used in the above mentioned applications results in complex processes of material
ionisation and evolution of plasma which comprises cascaded multi-photon absorption, plasma absorption, and
defocusing. As a result the propagation appears to be extremely complex affected by a combination of multiple
nonlinear effects.

In this paper, we consider a mathematical model being an extended non-local version of NLSE which is
derived from coupling between GNLSE and the particle balance equation for plasma resulting from multi-photon
and avalanche ionisation processes. The creation of plasma results from multi-photon absorption leading to
resistive absorption of laser light and its defocusing. These effects together with Kerr effect, diffraction and
dispersion make the pulse propagation a very complex phenomenon developing over a range of scales in space
and time [2].

We illustrate our approach for the following model describing nonlinear propagation of intense ultrashort
laser pulse in transparent dielectric media. We use a set of equations equivalent to that used by Feng et al [9].
An extensive discussion of more advanced models can be found in a recent review [8]. Note that our aproach
can be exploited for more complicated forms of the wave equations of NLSE type.

The first equation is the NLSE describing an envelope amplitude u of the laser wave coupled to an equation
describing concentration of plasma carriers ρ along the z-axis:

∂zu− iκΔ⊥u− iσ|u|2u = −id∂ttu− γ(1 + iωτ)ρu− μ|u|2(K−1)u ; (1)

∂tρ = νρ|u|2 +
( |u|
u0

)2K

. (2)

The notation used in this paper and parameters are described in our earlier papers [1], [2]. Here u stands for the
envelope amplitude of electric field with angular frequency ω and the wave vector k:

E = u(r⊥, t, z)ei(ωt−kz) .

The terms in the left hand-side of Eq.(1) describe the effects of beam diffraction and Kerr self-refraction. These
terms alone form the well known NLSE. Kerr effect in 2D and 3D geometries leads to a singular catastrophic
self-focusing which is ultimately arrested by effects of dispersion [10], plasma absorption and defocusing, and
multi-photon absorption (MPA) [2]. The first term in the right hand-side of equation (1) describes dispersion.
The second term on the right hand side (γ(1 + iωτ)ρu) comprises effects of plasma absorption and defocusing
and the final term in this equation describes MPA.

Equation (2) describes evolution of plasma density ρ. The first term in the right hand side describes avalanche
ionization and the second term describes multi-photon ionization.

Extended NLSE in the form of Eqs.(1,2) is a system of nonlinear partial differential equations which can not
be solved analytically. Two main numerical approaches have been used for solution of NLSE known as finite-
difference method and pseudo-spectral methods. The coupling between the equations makes NLSE non-local
which results in impossible straightforward parallel implementation typical for explicit finite difference methods.
The pseudospectral methods are proven to be faster and in that category spilt-step Fourier method is proven to
be the most efficient [6, 7].

The splitting operator method is used here similar to that in [1] to reduce extended NLSE into a succession
of linear and nonlinear steps. The split-step method derives an approximate discretised solution by considering
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effects of linearity and nonlinearity independently by dividing the problem into two sequential steps where in
the first step nonlinearity acts alone and the second step is for independent linear effect as shown below[7]:

∂zu = Lu = −iκΔ⊥u+ id∂ttu = 0 ; (3)

∂zu = Nu = −iγ(1 + iωτ)ρu− σ|u|2u− iμ|u|2(K−1)u . (4)

Here L and N schematically denote the linear and nonlinear operators correspondingly. It can be shown that con-
secutive application of linear and nonlinear operators after finite increment of evolution variable z approximates
the original system of differential equations Eqs.(1,2):

u(z +Δz) = exp

(
N

2
Δz + LΔz +

N

2
Δz

)
u(z) +O(Δz3) . (5)

2.1 Initial Condition

We used radially symmetric initial conditions having Gaussian shape in radial and temporal dimensions presented
in [2], [9] :

u(z = 0, r⊥, t) =

√
2Pin

πr20
exp

(
−r2

r20
− ikr2

2f
− t2

t2p

)
, (6)

where r0 stands for the waist of the incident beam, tp is the pulsewidth, f is the focal length of the lens and Pin

is the peak input power [2], [9]. The initial pulse is stored in a complex matrix u(m,n) which is a discretisation
of continuous field u(r, t). To boost performance,this matrix is physically stored as a 1D array of size Nr ×Nt

where Nr and Nt stand for the number of grid points in radial and time direction accordingly. Every row in this
matrix contains u(t) for a fixed radial position. The array is periodically reorganised using parallel routines to
perform matrix transposition in order to provide continuous storage for coordinate-wise parallel operations such
as Fourier transform and integration of the radial operator using Cranck-Nicholson scheme. The numerical step
in evolution variable z was varied to ensure a proper approximation of discrete numerical scheme.

3. GRAPHICS PROCESSING UNITS AND CUDA

Graphics Processing Units are specialised processors that are designed for highly parallel computations needed
for graphics rendering where more arithmetic units are devoted to data processing rather than data cache and
flow control. Their highly parallel capabilities makes them suitable for complex algorithms, However they require
low level programming and fine adjustment of the algorithms in order to ensure concurrent independent access
to data [4].

To design an efficient and optimised numerical model, we have chosen to use the highly parallel capabilities
of a programmable graphics processor from Nvidia’s products through the CUDA (Compute Unified Device
Architecture) interface. CUDA links the application software and hardware required for extremely parallel
computation systems [4]. It is essentially a commodity solution that enables low cost parallel programming
possible via flexible and easily adaptable extension of the C language. The C language interface provided by
CUDA is far less complicated compared to other graphics API like OpenGL.

In order to efficiently exploit CUDA’s parallel resources, radical revision is required of the traditional split-
step procedures routinely used for integration of NLSE type models. Parallel execution of the code by multiple
threads increases the computation throughput and achieves more accurate results whilst reducing the processing
time [11].
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Figure 1. Difference between the real and imaginary part of the result produced by CPU and GPU for calculation of the
linear term.

4. PARALLELISATION

As mentioned earlier, the splitting operator method is used to simplify the non-local non-linear NLSE to reduce
it into a succession of linear and nonlinear steps.

To solve the linear term (Eq. 3), Fast Fourier Transform is applied in the time domain which results in a
linear radial problem for each temporal frequency mode as shown below:

∂zũ = −iκΔ⊥ũ+ idω2ũ , where ũ = F · u . (7)

FFT is applied using cufft, CUDA’s own implementation of FFT on batches of size Nt for every row of data
[12]. To access continuous chunks of memory more efficiently, parallel transposition is implemented on every
row of data. Subsequently an implicit finite difference solution is used for Eq.(6) which uses a tridiagonal solver
for Cranck-Nicholson discretisation in evolution variable z. Figure 1 plots the difference between the result
obtained from calculation of the linear term on CPU(using a serial version similar to that described in [1], [2])
and GPU(on Nvidia’s CUDA) for problem of size 322. Here relative error is calculated by |ucpu−ugpu|/max|ucpu|,
where indices cpu and gpu represent results obtained from the calculations on CPU and GPU accordingly. It
can be seen that the relative error is in the acceptable range of 10−6 for single floating point precision.

While cufft and concurrent execution of tridiagonal solver provide a satisfactory scalable parallel solution for
numerical integration of the linear operator, scalable implementation of nonlinear step is tricky since it involves
a convoluted nonlocal operator.

In the non-linear term, non-local dependence of ρ on u results in global coupling. Eq.(2) is usually solved
using one of the methods for numerical integration for first order ordinary differential equation. It is essentially
serial procedure. On the other hand, Eq.(2) for a given intensity |u|2 is a linear equation for ρ which can be
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Figure 2. Parallel calculation of
∫
Idt required for Eq. 8.

analytically integrated to yield a solution. Since the differential solution is serial and integration can be made
parallel easier, integration is used to parallelise the solution by splitting the problem as an integral equation in
time domain. The solution of Eq.(2) for a given intensity I(t) is:

ρ(t) = exp(ϕ(t))

t∫
−∞

IK exp(−ϕ(t)dt , (8)

where

ϕ(t) =

t∫
−∞

Idt .

Note that, this solution is provided for initial condition for Eq.(2).

In our numerical implementation of Eq.(8), we delegate partial numerical integration using trapezoidal rule
to concurrently running threads as illustrated in Figure 2. Here the parallel prefix sum implementation described
in [13] provided by Nvidia corporation is used to perform scan sum of the data using a balanced tree algorithmic
pattern.

Figure 3, plots the maximum relative error calculated from comparison of the results obtained from CPU and
GPU for different number of mesh points starting from 32× 32. Both CPU and GPU results are obtained from
completion of one step combining both the linear and nonlinear implementation of NLSE(Eq. 5). As illustrated
in this figure, as the problem size increases, the maximum error becomes very small in the range of 10−6 which is
limited by arithmetic precision. Since the implementation of this code differs in CPU and GPU due to peculiar
parallelisation of the GPU code, this proves that both method converge with sufficiently high accuracy at finer
resolutions as illustrated in Fig 3.

For the experimental setup, we have used an Nvidia Tesla C1060 with Nvidia driver 195.36 and CUDA version
3.0. The C1060 has 30 streaming multiprocessor(SM), where each multiprocessor is comprised of 8 streaming
processor(SP), providing us with a total of 240 SPs. A 16KB shared memory is assigned to each SM providing
a fast low-latency data cache. Also there is 4GB of device memory available on the C1060.

The performance comparison has been done between a CPU serial code similar to that described in [1], [2] and
a GPU parallel code. The execution time of CPU and GPU implementation is compared in Figure 4, which is
calculated by taking the wall clock time on both CPU and GPU including the initial set-up and the data transfer
time from CPU’s host memory to GPU’s global memory. As the problem size increases the GPU comuting speed
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Figure 3. Relative error derived from comparison of results produced by CPU and GPU for different number of mesh
points starting from Nr ×Nt = 32× 32 up to Nr ×Nt = 2048× 2048.
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Figure 4. CPU vs GPU comparison of performance time for calculation of both linear and nonlinear term

is notably increased providing us with a 63x speed-up. Here the speed-up is calculated by dividing the execution
time on CPU by the required execution time on GPU.

5. CONCLUSION

We have managed to successfully parallelise solution of non-local extended NLSE through CUDA interface using
multithreaded graphical hardware. We compared performance of the described above parallel code implemented
for Nvidia Graphics Processing Units using CUDA programming interface with a serial CPU version used in
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[1,2]. The result of this comparison showed us a satisfactory 10−6 difference between GPU and CPU results for
single floating point precision. As for performance time, we have up to ×60 speedup on a Tesla C1060 Graphics
card compared to a Intel Core i7.
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