2,870 research outputs found

    From stars to nuclei

    Full text link
    We recall the basic physical principles governing the evolution of stars with some emphasis on the role played by the nuclear reactions. We argue that in general it is not possible from observations of stars to deduce constraints on the nuclear reaction rates. This is the reason why precise measurements of nuclear reaction rates are a necessity in order to make progresses in stellar physics, nucleosynthesis and chemical evolution of galaxies. There are however some stars which provides useful constraint on nuclear processes. The Wolf-Rayet stars of the WN type present at their surface CNO equilibrium patterns. There is also the particular case of the abundance of 22^{22}Ne at the surface of WC stars. The abundance of this element is a measure of the initial CNO content. Very interestingly, recent determinations of its abundance at the surface of WC stars tend to confirm that massive stars in the solar neighborhood have initial metallicities in agreement with the Asplund et al. (2005) solar abundances.Comment: 8 pages, 2 figures, be published in "European Physical Journal: Special Topics

    Stellar evolution with rotation and magnetic fields II: General equations for the transport by Tayler--Spruit dynamo

    Full text link
    We further develop the Tayler--Spruit dynamo theory, based on the most efficient instability for generating magnetic fields in radiative layers of differentially rotating stars. We avoid the simplifying assumptions that either the μ\mu-- or the TT--gradient dominates, but we treat the general case and we also account for the nonadiabatic effects, which favour the growth of the magnetic field. Stars with a magnetic field rotate almost as a solid body. Several of their properties (size of the core, MS lifetimes, tracks, abundances) are closer to those of models without rotation than with rotation only. In particular, the observed N/C or N/H excesses in OB stars are better explained by our previous models with rotation only than by the present models with magnetic fields that predict no nitrogen excesses. We show that there is a complex feedback loop between the magnetic instability and the thermal instability driving meridional circulation. This opens the possibility for further magnetic models, but at this stage we do not know the relative importance of the magnetic fields due to the Tayler instability in stellar interiors.Comment: 14 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Stellar Evolution in the Early Universe

    Full text link
    Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this paper, we describe the strong impact of rotation induced mixing and mass loss at very low ZZ. The strong mixing leads to a significant production of primary nitrogen 14, carbon 13 and neon 22. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z=0 for stars more massive than 60 solar masses. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and C12/C13. We calculated the weak s-process production induced by the primary neon 22 and obtain overproduction factors (relative to the initial composition, Z=1.e-6) between 100-1000 in the mass range 60-90.Comment: 8 pages, 4 figures, proceedings of IAU Symposium 255, "Low-Metallicity Star Formation: From the First stars to Dwarf Galaxies", L.K. Hunt, S. Madden & R. Schneider, ed

    Wind anisotropies and GRB progenitors

    Get PDF
    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M_\odot star with Ω/Ωcrit=0.75\Omega/\Omega_{\rm crit}=0.75 on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at ZZ=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette

    The thermonuclear production of F19 by Wolf-Rayet stars revisited

    Full text link
    New models of rotating and non-rotating stars are computed for initial masses between 25 and 120 Msun and for metallicities Z = 0.004, 0.008, 0.020 and 0.040 with the aim of reexamining the wind contribution of Wolf-Rayet (WR) stars to the F19 enrichment of the interstellar medium. Models with an initial rotation velocity vini = 300 km/s are found to globally eject less F19 than the non-rotating models. We compare our new predictions with those of Meynet & Arnould (2000), and demonstrate that the F19 yields are very sensitive to the still uncertain F19(alpha,p)Ne22 rate and to the adopted mass loss rates. Using the recommended mass loss rate values that take into account the clumping of the WR wind and the NACRE reaction rates when available, we obtain WR F19 yields that are significantly lower than predicted by Meynet & Arnould (2000), and that would make WR stars non-important contributors to the galactic F19 budget. In view, however, of the large nuclear and mass loss rate uncertainties, we consider that the question of the WR contribution to the galactic F19 remains quite largely open.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Models for Pop I stars: implications for age determinations

    Full text link
    Starting from a few topical astrophysical questions which require the knowledge of the age of Pop I stars, we discuss the needed precision on the age in order to make progresses in these areas of research. Then we review the effects of various inputs of the stellar models on the age determination and try to identify those affecting the most the lifetimes of stars.Comment: 10 pages, 6 figures, 2 tables, IAU Symp. 258, D. Soderblom et al. ed

    Stellar evolution with rotation X: Wolf-Rayet star populations at solar metallicity

    Full text link
    We examine the properties of Wolf--Rayet (WR) stars predicted by models of rotating stars taking account of the new mass loss rates for O--type stars and WR stars (Vink et al. \cite{Vink00}, \cite{Vink01}; Nugis & Lamers \cite{NuLa00}) and of the wind anisotropies induced by rotation. We find that the rotation velocities vv of WR stars are modest, i.e. about 50 km s1^{-1}, not very dependant on the initial vv and masses. For the most massive stars, the evolution of vv is very strongly influenced by the values of the mass loss rates; below \sim12 M_\odot the evolution of rotation during the MS phase and later phases is dominated by the internal coupling. Massive stars with extreme rotation may skip the LBV phase. Models having a typical vv for the O--type stars have WR lifetimes on the average two times longer than for non--rotating models. The increase of the WR lifetimes is mainly due to that of the H--rich eWNL phase. Rotation allows a transition WN/WC phase to be present for initial masses lower than 60 M_\odot. The durations of the other WR subphases are less affected by rotation. The mass threshold for forming WR stars is lowered from 37 to 22 M_\odot for typical rotation. The comparisons of the predicted number ratios WR/O, WN/WC and of the number of transition WN/WC stars show very good agreement with models with rotation, while this is not the case for models with the present--day mass loss rates and no rotation. As to the chemical abundances in WR stars, rotation brings only very small changes for WN stars, since they have equilibrium CNO values. However, WC stars with rotation have on average lower C/He and O/He ratios. The luminosity distribution of WC stars is also influenced by rotation.Comment: 17 pages, 20 figures, accepted for publication in A&

    Stellar evolution with rotation XI: Wolf-Rayet star populations at different metallicities

    Full text link
    Grids of models of massive stars (MM \ge 20 MM_\odot) with rotation are computed for metallicities ZZ ranging from that of the Small Magellanic Cloud (SMC) to that of the Galactic Centre. The hydrostatic effects of rotation, the rotational mixing and the enhancements of the mass loss rates by rotation are included. The evolution of the surface rotational velocities of the most massive O--stars mainly depends on the mass loss rates and thus on the initial ZZ value. The minimum initial mass for a star for entering the Wolf--Rayet (WR) phase is lowered by rotation. For all metallicities, rotating stars enter the WR phase at an earlier stage of evolution and the WR lifetimes are increased, mainly as a result of the increased duration of the eWNL phase. Models of WR stars predict in general rather low rotation velocities (<50 < 50 km s1^{-1}) with a few possible exceptions, particularly at metallicities lower than solar where WR star models have in general faster rotation and more chance to reach the break--up limit.The properties of the WR populations as predicted by the rotating models are in general in much better agreement with the observations in nearby galaxies. The observed variation with metallicity of the fractions of type Ib/Ic supernovae with respect to type II supernovae as found by Prantzos & Boissier (\cite{Pr03}) is very well reproduced by the rotating models, while non--rotating models predict much too low ratios.Comment: 20 pages, 16 figure, Astronomy and Astrophysics, in pres
    corecore