New models of rotating and non-rotating stars are computed for initial masses
between 25 and 120 Msun and for metallicities Z = 0.004, 0.008, 0.020 and 0.040
with the aim of reexamining the wind contribution of Wolf-Rayet (WR) stars to
the F19 enrichment of the interstellar medium. Models with an initial rotation
velocity vini = 300 km/s are found to globally eject less F19 than the
non-rotating models. We compare our new predictions with those of Meynet &
Arnould (2000), and demonstrate that the F19 yields are very sensitive to the
still uncertain F19(alpha,p)Ne22 rate and to the adopted mass loss rates. Using
the recommended mass loss rate values that take into account the clumping of
the WR wind and the NACRE reaction rates when available, we obtain WR F19
yields that are significantly lower than predicted by Meynet & Arnould (2000),
and that would make WR stars non-important contributors to the galactic F19
budget. In view, however, of the large nuclear and mass loss rate
uncertainties, we consider that the question of the WR contribution to the
galactic F19 remains quite largely open.Comment: 9 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic