67,899 research outputs found
Age differences in encoding-related alpha power reflect sentence comprehension difficulties
When sentence processing taxes verbal working memory, comprehension difficulties arise. This is specifically the case when processing resources decline with advancing adult age. Such decline likely affects the encoding of sentences into working memory, which constitutes the basis for successful comprehension. To assess age differences in encoding-related electrophysiological activity, we recorded the electroencephalogram from three age groups (24, 43, and 65 years). Using an auditory sentence comprehension task, age differences in encoding-related oscillatory power were examined with respect to the accuracy of the given response. That is, the difference in oscillatory power between correctly and incorrectly encoded sentences, yielding subsequent memory effects (SME), was compared across age groups. Across age groups, we observed an age-related SME inversion in the alpha band from a power decrease in younger adults to a power increase in older adults. We suggest that this SME inversion underlies age-related comprehension difficulties. With alpha being commonly linked to inhibitory processes, this shift may reflect a change in the cortical inhibition–disinhibition balance. A cortical disinhibition may imply enriched sentence encoding in younger adults. In contrast, resource limitations in older adults may necessitate an increase in cortical inhibition during sentence encoding to avoid an information overload. Overall, our findings tentatively suggest that age-related comprehension difficulties are associated with alterations to the electrophysiological dynamics subserving general higher cognitive functions
Stroke units: The implementation of a complex intervention
This article reports on selected findings from an action research study that looked at the lessons learnt from setting up a new in-patient stroke service in a London teaching hospital. Key participants in the design and evaluation of this 2-year study included members of the multi-professional stroke team and support staff within the unit, the hospital management team and representatives of patients and carers. Mixed methods (focus groups, indepth interviews, audits, documentary analysis, participant observation field notes) were used to generate data. Findings demonstrated positive change overtime with four main themes emerging from the process: building a team; developing practice-based knowledge and skills in stroke; valuing the central role of the nurse in stroke care; and creating an organisational climate for supporting change. The interplay of these non-linear, but interrelated factors is supported by complexity theory, which includes exploration of how the sum of a whole can be more than its constituent parts. Findings are likely to be of interest to practitioners, managers and policy makers interested in supporting change in a learning organisation
Excitations of Few-Boson Systems in 1-D Harmonic and Double Wells
We examine the lowest excitations of one-dimensional few-boson systems
trapped in double wells of variable barrier height. Based on a numerically
exact multi-configurational method, we follow the whole pathway from the
non-interacting to the fermionization limit. It is shown how, in a purely
harmonic trap, the initially equidistant, degenerate levels are split up due to
interactions, but merge again for strong enough coupling. In a double well, the
low-lying spectrum is largely rearranged in the course of fermionization,
exhibiting level adhesion and (anti-)crossings. The evolution of the underlying
states is explained in analogy to the ground-state behavior. Our discussion is
complemented by illuminating the crossover from a single to a double well.Comment: 11 pages, 10 figure
Correlations in Ultracold Trapped Few-Boson Systems: Transition from Condensation to Fermionization
We study the correlation properties of the ground states of few ultracold
bosons, trapped in double wells of varying barrier height in one dimension.
Extending previous results on the signature of the transition from a
Bose-condensed state via fragmentation to the hard-core limit, we provide a
deeper understanding of that transition by relating it to the loss of coherence
in the one-body density matrix and to the emerging long-range tail in the
momentum spectrum. These are accounted for in detail by discussing the natural
orbitals and their occupations. Our discussion is complemented by an analysis
of the two-body correlation function.Comment: 22 pages, 7 figure
Quantum dynamics of two bosons in an anharmonic trap: Collective vs internal excitations
This work deals with the effects of an anharmonic trap on an interacting
two-boson system in one dimension. Our primary focus is on the role of the
induced coupling between the center of mass and the relative motion as both
anharmonicity and the (repulsive) interaction strength are varied. The ground
state reveals a strong localization in the relative coordinate, counteracting
the tendency to fragment for stronger repulsion. To explore the quantum
dynamics, we study the system's response upon (i) exciting the harmonic ground
state by continuously switching on an additional anharmonicity, and (ii)
displacing the center of mass, this way triggering collective oscillations. The
interplay between collective and internal dynamics materializes in the collapse
of oscillations, which are explained in terms of few-mode models.Comment: 8 pages, 7 figure
Acoustical evaluation of the NASA Langley full-scale wind tunnel
Determining types of acoustical measurements suitable for test section of NASA Langley wind tunne
Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions
Currently, most of the basic mechanisms governing tumor-immune system
interactions, in combination with modulations of tumor-associated vasculature,
are far from being completely understood. Here, we propose a mathematical model
of vascularized tumor growth, where the main novelty is the modeling of the
interplay between functional tumor vasculature and effector cell recruitment
dynamics. Parameters are calibrated on the basis of different in vivo
immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth
experiments. The model analysis supports that tumor vasculature normalization
can be a plausible and effective strategy to treat cancer when combined with
appropriate immuno-stimulations. We find that improved levels of functional
tumor vasculature, potentially mediated by normalization or stress alleviation
strategies, can provide beneficial outcomes in terms of tumor burden reduction
and growth control. Normalization of tumor blood vessels opens a therapeutic
window of opportunity to augment the antitumor immune responses, as well as to
reduce the intratumoral immunosuppression and induced-hypoxia due to vascular
abnormalities. The potential success of normalizing tumor-associated
vasculature closely depends on the effector cell recruitment dynamics and tumor
sizes. Furthermore, an arbitrary increase of initial effector cell
concentration does not necessarily imply a better tumor control. We evidence
the existence of an optimal concentration range of effector cells for tumor
shrinkage. Based on these findings, we suggest a theory-driven therapeutic
proposal that optimally combines immuno- and vaso-modulatory interventions
Tunneling dynamics of few bosons in a double well
We study few-boson tunneling in a one-dimensional double well. As we pass
from weak interactions to the fermionization limit, the Rabi oscillations first
give way to highly delayed pair tunneling (for medium coupling), whereas for
very strong correlations multi-band Rabi oscillations emerge. All this is
explained on the basis of the exact few-body spectrum and without recourse to
the conventional two-mode approximation. Two-body correlations are found
essential to the understanding of the different tunnel mechanisms. The
investigation is complemented by discussing the effect of skewing the double
well, which offers the possibility to access specific tunnel resonancesComment: 10 pages, 8 figure
New Era, New Opportunity, Is GES DISC Ready for Big Data Challenge?
The new era of Big Data has opened doors for many new opportunities, as well as new challenges, for both Earth science research/application and data communities. As one of the twelve NASA data centers - Goddard Earth Sciences Data and Information Services Center (GES DISC), one of our great challenges has been how to help research/application community efficiently (quickly and properly) accessing, visualizing and analyzing the massive and diverse data in natural hazard research, management, or even prediction. GES DISC has archived over 2000 TB data on premises and distributed over 23,000 TB of data since 2010. Our data has been widely used in every phase of natural hazard management and research, i.e. long term risk assessment and reduction, forecasting and predicting, monitoring and detection, early warning, damage assessment and response. The big data challenge is not just about data storage, but also about data discoverability and accessibility, and even more, about data migration/mirroring in the cloud. This paper is going to demonstrate GES DISCs efforts and approaches of evolving our overall Web services and powerful Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) tool into further improving data discoverability and accessibility. Prototype works will also be presented
- …