9,123 research outputs found

    Towards an Output-based Re-meshing for Turbomachinery Applications

    Get PDF
    The truncation error estimation methodology using topologically inconsistent fine and coarse meshes was presented. Estimated truncation error was weighted with an adjoint solution to obtain a robust output-based adaptation sensor. Re-meshing using Boxer and output-based sensor field was successfully applied to the simple cube test case showing almost an order of magnitude cost function error reduction as compared to the uniformly refined grid. More application examples are required including a more realistic turbulent cases e.g. turbine stator in order to investigate how useful is the methodology in practice. The key challenge for viscous flows is related to the treatment of boundary layer when performing re-meshing with Boxe

    A Conserved Mitochondrial ATP-binding Cassette Transporter Exports Glutathione Polysulfide for Cytosolic Metal Cofactor Assembly

    Get PDF
    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.This work was supported in part by the Biotechnology and Biological Sciences Research Council Grant BB/H00288X/1

    The Role of Deontic Logic in the Specification of Information Systems

    Get PDF
    In this paper we discuss the role that deontic logic plays in the specification of information systems, either because constraints on the systems directly concern norms or, and even more importantly, system constraints are considered ideal but violable (so-called `soft¿ constraints).\ud To overcome the traditional problems with deontic logic (the so-called paradoxes), we first state the importance of distinguishing between ought-to-be and ought-to-do constraints and next focus on the most severe paradox, the so-called Chisholm paradox, involving contrary-to-duty norms. We present a multi-modal extension of standard deontic logic (SDL) to represent the ought-to-be version of the Chisholm set properly. For the ought-to-do variant we employ a reduction to dynamic logic, and show how the Chisholm set can be treated adequately in this setting. Finally we discuss a way of integrating both ought-to-be and ought-to-do reasoning, enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones, and show by an example the use(fulness) of this

    Effective String Theory and Nonlinear Lorentz Invariance

    Full text link
    We study the low-energy effective action governing the transverse fluctuations of a long string, such as a confining flux tube in QCD. We work in the static gauge where this action contains only the transverse excitations of the string. The static gauge action is strongly constrained by the requirement that the Lorentz symmetry, that is spontaneously broken by the long string vacuum, is nonlinearly realized on the Nambu-Goldstone bosons. One solution to the constraints (at the classical level) is the Nambu-Goto action, and the general solution contains higher derivative corrections to this. We show that in 2+1 dimensions, the first allowed correction to the Nambu-Goto action is proportional to the squared curvature of the induced metric on the worldsheet. In higher dimensions, there is a more complicated allowed correction that appears at lower order than the curvature squared. We argue that this leading correction is similar to, but not identical to, the one-loop determinant (\sqrt{-h} R \Box^{-1} R) computed by Polyakov for the bosonic fundamental string.Comment: 15 page

    Gorenstein homological algebra and universal coefficient theorems

    Get PDF
    We study criteria for a ring—or more generally, for a small category—to be Gorenstein and for a module over it to be of finite projective dimension. The goal is to unify the universal coefficient theorems found in the literature and to develop machinery for proving new ones. Among the universal coefficient theorems covered by our methods we find, besides all the classic examples, several exotic examples arising from the KK-theory of C*-algebras and also Neeman’s Brown–Adams representability theorem for compactly generated categories

    The cultural capitalists: notes on the ongoing reconfiguration of trafficking culture in Asia

    Get PDF
    Most analysis of the international flows of the illicit art market has described a global situation in which a postcolonial legacy of acquisition and collection exploits cultural heritage by pulling it westwards towards major international trade nodes in the USA and Europe. As the locus of consumptive global economic power shifts, however, these traditional flows are pulled in other directions: notably for the present commentary, towards and within Asia

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    The impact of cave lighting on the bioluminescent display of the Tasmanian glow-worm Arachnocampa tasmaniensis

    Get PDF
    Bioluminescent larvae of the dipteran genus Arachnocampa are charismatic microfauna that can reach high densities in caves, where they attract many visitors. These focal populations are the subjects of conservation management because of their high natural and commercial value. Despite their tourism importance, little is known about their susceptibility and resilience to natural or human impacts. At Marakoopa Cave in northern Tasmania, guided tours take visitors through different chambers and terminate at a viewing platform where the cave lighting is extinguished and a glowing colony of Arachnocampa tasmaniensis (Diptera: Keroplatidae) larvae on the chamber ceiling is revealed. Research has shown that exposure to artificial light can cause larvae to douse or dim their bioluminescence; hence, the cave lighting associated with visitor access could reduce the intensity of the natural display. We used time-lapse digital photography to record light output over 10 days to determine whether cave lighting affects the intensity or rhythmicity of bioluminescence. Simultaneously, another colony in a different section of the cave, away from tourist activity, was photographed over 3 days. Both colonies showed high-amplitude 24 h cycling of bioluminescence intensity, with the peak occurring at 11.50 h at the unvisited site and 12.50 h at the main chamber, so the time of peak display did not appear to be substantially affected by light exposure. Intermittent light exposure experienced by larvae in the main chamber caused detectable reductions in bioluminescence intensity; however, recovery was rapid and the overall shape of the daily bioluminescence curve closely matched that of the unvisited colony. In conclusion, the artificial light exposure regime used in Marakoopa Cave does not have a substantial effect on the timing or quality of the bioluminescence display. The time-lapse photographic monitoring method could be permanently implemented at focal tourism sites to provide information about daily, seasonal and annual fluctuations in the displays, the response to events such as drought and flood, and the population's ability to recover from adverse conditions

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins
    corecore