69,202 research outputs found
On the Dynamics and Disentanglement in Thin and Two-Dimensional Polymer Films
We present results from molecular dynamics simulations of strictly
two-dimensional (2D) polymer melts and thin polymer films in a slit geometry of
thickness of the order of the radius of gyration. We find that the dynamics of
the 2D melt is qualitatively different from that of the films. The 2D monomer
mean-square displacement shows a power law at intermediate times
instead of the law expected from Rouse theory for nonentangled
chains. In films of finite thickness, chain entanglements may occur. The impact
of confinement on the entanglement length has been analyzed by a
primitive path analysis. The analysis reveals that increases
strongly with decreasing film thickness.Comment: 6 pages, 3 figures, proceedings 3rd International Workshop on
Dynamics in Confinement (CONFIT 2006
Diffusion and Interdiffusion in Binary Metallic Melts
We discuss the dependence of self- and interdiffusion coefficients on
temperature and composition for two prototypical binary metallic melts, Al-Ni
and Zr-Ni, in molecular-dynamics (MD) computer simulations and the
mode-coupling theory of the glass transition (MCT). Dynamical processes that
are mainly entropic in origin slow down mass transport (as expressed through
self diffusion) in the mixture as compared to the ideal-mixing contribution.
Interdiffusion of chemical species is a competition of slow kinetic modes with
a strong thermodynamic driving force that is caused by non-entropic
interactions. The combination of both dynamic and thermodynamic effects causes
qualitative differences in the concentration dependence of self-diffusion and
interdiffusion coefficients. At high temperatures, the thermodynamic
enhancement of interdiffusion prevails, while at low temperatures, kinetic
effects dominate the concentration dependence, rationalized within MCT as the
approach to its ideal-glass transition temperature . The Darken equation
relating self- and interdiffusion qualitatively reproduces the
concentration-dependence in both Zr-Ni and Al-Ni, but quantitatively, the
kinetic contributions to interdiffusion can be slower than the lower bound
suggested by the Darken equation. As temperature is decreased, the agreement
with Darken's equation improves, due to a strong coupling of all kinetic modes
that is a generic feature predicted by MCT.Comment: 16 pages, 12 figure
p-GaAs nanowire MESFETs with near-thermal limit gating
Difficulties in obtaining high-performance p-type transistors and gate
insulator charge-trapping effects present two major challenges for III-V
complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs
nanowire metal-semiconductor field-effect transistor (MESFET) that eliminates
the need for a gate insulator by exploiting the Schottky barrier at the
metal-GaAs interface. Our device beats the best-performing p-GaSb nanowire
metal-oxide-semiconductor field effect transistor (MOSFET), giving a typical
sub-threshold swing of 62 mV/dec, within 4% of the thermal limit, on-off ratio
, on-resistance ~700 k, contact resistance ~30 k,
peak transconductance 1.2 S/m and high-fidelity ac operation at
frequencies up to 10 kHz. The device consists of a GaAs nanowire with an
undoped core and heavily Be-doped shell. We carefully etch back the nanowire at
the gate locations to obtain Schottky-barrier insulated gates whilst leaving
the doped shell intact at the contacts to obtain low contact resistance. Our
device opens a path to all-GaAs nanowire MESFET complementary circuits with
simplified fabrication and improved performance
Asymmetric supernova remnants generated by Galactic, massive runaway stars
After the death of a runaway massive star, its supernova shock wave interacts
with the bow shocks produced by its defunct progenitor, and may lose energy,
momentum, and its spherical symmetry before expanding into the local
interstellar medium (ISM). We investigate whether the initial mass and space
velocity of these progenitors can be associated with asymmetric supernova
remnants. We run hydrodynamical models of supernovae exploding in the
pre-shaped medium of moving Galactic core-collapse progenitors. We find that
bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants.
The shock wave first collides with these bow shocks 160-750 yr after the
supernova, and the collision lasts until 830-4900 yr. The shock wave is then
located 1.35-5 pc from the center of the explosion, and it expands freely into
the ISM, whereas in the opposite direction it is channelled into the region of
undisturbed wind material. This applies to an initially 20 Mo progenitor moving
with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants
generate mixing of ISM gas, stellar wind and supernova ejecta that is
particularly important upstream from the center of the explosion. Their
lightcurves are dominated by emission from optically-thin cooling and by X-ray
emission of the shocked ISM gas. We find that these remnants are likely to be
observed in the [OIII] lambda 5007 spectral line emission or in the soft
energy-band of X-rays. Finally, we discuss our results in the context of
observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure
XTE J1550-564: INTEGRAL Observations of a Failed Outburst
The well known black-hole X-ray binary transient XTE J1550-564 underwent an
outburst during the spring of 2003 which was substantially underluminous in
comparison to previous periods of peak activity in that source. In addition,
our analysis shows that it apparently remained in the hard spectral state over
the duration of that outburst. This is again in sharp contrast to major
outbursts of that source in 1998/1999 during which it exhibited an irregular
light curve, multiple state changes and collimated outflows. This leads us to
classify it as a "failed outburst." We present the results of our study of the
spring 2003 event including light curves based on observations from both
INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy
3-300 keV continuum spectrum using data obtained with three main instruments on
INTEGRAL. These spectra are consistent with typical low-hard-state thermal
Comptonization emission. We also consider the 2003 event in the context of a
multi-source, multi-event period-peak luminosity diagram in which it is a clear
outlyer. We then consider the possibility that the 2003 event was due to a
discrete accretion event rather than a limit-cycle instablility. In that
context, we apply model fitting to derive the timescale for viscous propagation
in the disk, and infer some physical characteristics.Comment: 22 pages, 8 figures, to be published in The Astrophysical Journa
Noncommutative with Quantized Cosmological Constant
We examine a recent deformation of three-dimensional anti-deSitter gravity
based on noncommutative Chern-Simons theory with gauge group . In addition to a noncommutative analogue of 3D gravity, the theory
contains two addition gauge fields which decouple in the commutative limit. It
is well known that the level is quantized in noncommutative Chern-Simons
theory. Here it implies that the cosmological constant goes like minus one over
an integer-squared. We construct the noncommutative vacuum by applying
a Seiberg-Witten map from the commutative case. The procedure is repeated for
the case of a conical space resulting from a massive spinning particle.Comment: 16 p
Stacking-fault energies for Ag, Cu, and Ni from empirical tight-binding potentials
The intrinsic stacking-fault energies and free energies for Ag, Cu, and Ni
are derived from molecular-dynamics simulations using the empirical
tight-binding potentials of Cleri and Rosato [Phys. Rev. B 48, 22 (1993)].
While the results show significant deviations from experimental data, the
general trend between the elements remains correct. This allows to use the
potentials for qualitative comparisons between metals with high and low
stacking-fault energies. Moreover, the effect of stacking faults on the local
vibrational properties near the fault is examined. It turns out that the
stacking fault has the strongest effect on modes in the center of the
transverse peak and its effect is localized in a region of approximately eight
monolayers around the defect.Comment: 5 pages, 2 figures, accepted for publication in Phys. Rev.
- …