16,835 research outputs found

    Forecasting rain events in the southern Great Plains using GPS total precipitable water amounts

    Get PDF
    Includes bibliographical references.Funding for this research is supported by an American Meteorological Society Graduate Student Fellowship, sponsored by the National Oceanic and Atmospheric Administration's (NOAA) Office of Global Programs, by NOAA under cooperative agreement NA17RJ1228 with CIRA, and by the Research and Scholarly Programs fund at Colorado State University (CSU)

    Liquid Oxygen Propellant Densification Production and Performance Test Results With a Large-Scale Flight-Weight Propellant Tank for the X33 RLV

    Get PDF
    This paper describes in-detail a test program that was initiated at the Glenn Research Center (GRC) involving the cryogenic densification of liquid oxygen (LO2). A large scale LO2 propellant densification system rated for 200 gpm and sized for the X-33 LO2 propellant tank, was designed, fabricated and tested at the GRC. Multiple objectives of the test program included validation of LO2 production unit hardware and characterization of densifier performance at design and transient conditions. First, performance data is presented for an initial series of LO2 densifier screening and check-out tests using densified liquid nitrogen. The second series of tests show performance data collected during LO2 densifier test operations with liquid oxygen as the densified product fluid. An overview of LO2 X-33 tanking operations and load tests with the 20,000 gallon Structural Test Article (STA) are described. Tank loading testing and the thermal stratification that occurs inside of a flight-weight launch vehicle propellant tank were investigated. These operations involved a closed-loop recirculation process of LO2 flow through the densifier and then back into the STA. Finally, in excess of 200,000 gallons of densified LO2 at 120 oR was produced with the propellant densification unit during the demonstration program, an achievement that s never been done before in the realm of large-scale cryogenic tests

    Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution over Free Space and Satellite Links

    Full text link
    To implement the BB84 decoy-state quantum key distribution (QKD) protocol over a lossy ground-satellite quantum uplink requires a source that has high repetition rate of short laser pulses, long term stability, and no phase correlations between pulses. We present a new type of telecom optical polarization and amplitude modulator, based on a balanced Mach-Zehnder interferometer configuration, coupled to a polarization-preserving sum-frequency generation (SFG) optical setup, generating 532 nm photons with modulated polarization and amplitude states. The weak coherent pulses produced by SFG meet the challenging requirements for long range QKD, featuring a high clock rate of 76 MHz, pico-second pulse width, phase randomization, and 98% polarization visibility for all states. Successful QKD has been demonstrated using this apparatus with full system stability up to 160 minutes and channel losses as high 57 dB [Phys. Rev. A, Vol. 84, p.062326]. We present the design and simulation of the hardware through the Mueller matrix and Stokes vector relations, together with an experimental implementation working in the telecom wavelength band. We show the utility of the complete system by performing high loss QKD simulations, and confirm that our modulator fulfills the expected performance.Comment: 21 pages, 8 figures and 2 table

    Development of a Next-Generation NIL Library in Arabidopsis Thaliana for Dissecting Complex Traits

    Get PDF
    The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.NSF DEB-1022196, DEB-0618302, DEB-0618347, IOS-09221457Integrative Biolog

    Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    Full text link
    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating secure key while experimentally emulating the varying channel losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21570 bits of secure finite-sized key in just a single upper-quartile pass.Comment: 12 pages, 7 figures, 2 table

    An unusual presentation of leishmaniasis in a human immunodeficiency virus-positive individual

    Get PDF
    INTRODUCTION: Leishmaniasis is a neglected tropical disease caused by vector-borne protozoa of the genus Leishmania. Cutaneous and mucocutaneous forms result in disfiguration or mutilation, whilst visceral leishmaniasis (VL) affects multiple organs and is fatal if untreated. Notably, Leishmania are capable of establishing a chronic infection, which may reactivate years after initial infection when the host becomes immune-suppressed. CASE PRESENTATION: A 24-year-old human immunodeficiency virus (HIV)-positive male presented for excision of anal condylomas. At the time of his current condyloma excision, the patient had no additional symptoms or cutaneous findings, but was noted to have been only intermittently compliant with his antiretroviral therapy. Microscopic examination of the haematoxylin and eosin-stained anal condyloma tissue revealed koilocytic change, ulceration and brisk histiocytic inflammation containing numerous small intracellular bodies suggestive of Leishmania amastigotes. A bone marrow biopsy was performed and demonstrated similar intracellular forms. Anal condyloma tissue and bone marrow aspirate were sent to the Centers for Disease Control and Prevention's Parasitic Diseases Branch for confirmation of Leishmania and speciation. Specific immunohistochemical staining for Leishmania in the tissue section was positive and the species was confirmed as Leishmania donovani by PCR. Subsequently, the patient resumed highly active antiretroviral therapy and received anti-Leishmania therapy. CONCLUSION: Whilst the presentation of VL in HIV-positive patients is often similar to those without HIV, here we describe an unusual initial presentation of leishmaniasis in an HIV-positive patient where the parasite was found in an anal condyloma. VL is a critical diagnosis that should be considered and pursued when leishmaniasis is encountered in seemingly illogical clinical settings

    Environmental Evaluation Report onn Various Completed Channel Improvement Projects in Eastern Arkansas

    Get PDF
    The objective of this report is to evaluate the beneficial and adverse effects that certain channel improvement projects have had on the natural or man-made environments of selected areas in eastern Arkansas. This evaluation will be used as a baseline for determining the immediate and long-term effects that a project may have on the existing environment of the Village Creek Basin
    corecore