4,441 research outputs found

    Astro2020 Science White Paper: Toward Finding Earth 2.0: Masses and Orbits of Small Planets with Extreme Radial Velocity Precision

    Get PDF
    Having discovered that Earth-sized planets are common, we are now embarking on a journey to determine if Earth-like planets are also common. Finding Earth-like planets is one of the most compelling endeavors of the 21st century - leading us toward finally answering the question: Are we alone? To achieve this forward-looking goal, we must determine the masses of the planets; the sizes of the planets, by themselves, are not sufficient for the determination of the bulk and atmospheric compositions. Masses, coupled with the radii, are crucial constraints on the bulk composition and interior structure of the planets and the composition of their atmospheres, including the search for biosignatures. Precision radial velocity is the most viable technique for providing essential mass and orbit information for spectroscopy of other Earths. The development of high quality precision radial velocity instruments coupled to the building of the large telescope facilities like TMT and GMT or space-based platforms like EarthFinder can enable very high spectral resolution observations with extremely precise radial velocities on minute timescales to allow for the modeling and removal of radial velocity jitter. Over the next decade, the legacy of exoplanet astrophysics can be cemented firmly as part of humankind's quest in finding the next Earth - but only if we can measure the masses and orbits of Earth-sized planets in habitable zone orbits around Sun-like stars.Comment: Science White Paper Submitted to the Astro2020 Decadal Survey (35 co-signers in addition to co-authors

    Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (LDAS) and Other Assimilated Hydrological Data at NASA GES DISC

    Get PDF
    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides science support for several data sets relevant to agriculture and food security, including the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (LDAS), or FLDAS data set. The GES DISC is one of twelve NASA Earth Observing System (EOS) data centers that process, archive, document, and distribute data from Earth science missions and related projects. The GES DISC hosts a wide range of remote sensing and model data, and provides reliable and robust data access and other services to users worldwide. Beyond data archive and access, the GES DISC offers many services to visualize and analyze the data. This presentation provides a summary of the hydrological data available at the GES DISC, along with an overview of related data services. Specifically, the FLDAS data set has been adapted to work with domains, data streams, and monitoring and forecast requirements associated with food security assessment in data-sparse, developing country settings. The FLDAS global monthly data have a 0.1 x 0.1 degree spatial resolution covering the period from January 1982 to present. Global FLDAS monthly anomaly and monthly climatology data are also available at the GES DISC to evaluate how current conditions compare to averages over the FLDAS 35-year period. Several case studies using the FLDAS soil moisture, evapotranspiration, rainfall, runoff, and surface temperature data will be presented

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio

    Skeletal muscle delimited myopathy and verapamil toxicity in SUR2 mutant mouse models of AIMS

    Get PDF
    ABCC9-related intellectual disability and myopathy syndrome (AIMS) arises from loss-of-function (LoF) mutations in the ABCC9 gene, which encodes the SUR2 subunit of ATP-sensitive potassium (

    Efficient first principles simulation of electron scattering factors for transmission electron microscopy

    Full text link
    Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron microscopy images. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.Comment: 10 pages, 5 figures, 2 table

    Measurement of Spin Correlation Parameters ANN_{NN}, ASS_{SS}, and A_SL{SL} at 2.1 GeV in Proton-Proton Elastic Scattering

    Full text link
    At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for ANN_{NN}, ASS_{SS}, and A_SL{SL} for c.m. scattering angles between 30o^o and 90o^o. Our data on ASS_{SS} -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while ANN_{NN} and A_SL{SL} are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure

    Nucleons or diquarks? Competition between clustering and color superconductivity in quark matter

    Get PDF
    We study the instabilities of quark matter in the framework of a generalized Nambu--Jona-Lasinio model, in order to explore possible competition between three-quark clustering to form nucleons and diquark formation leading to color superconductivity. Nucleon and Δ\Delta solutions are obtained for the relativistic Faddeev equation at finite density and their binding energies are compared with those for the scalar and axial-vector diquarks found from the Bethe-Salpeter equation. In a model with interactions in both scalar and axial diquark channels, bound nucleons exist up to nuclear matter density. However, except at densities below about a quarter of that of nuclear matter, we find that scalar diquark formation is energetically favored. This raises the question of whether a realistic phase diagram of baryonic matter can be obtained from any model which does not incorporate color confinement.Comment: 23 pages (RevTeX), 5 figures (epsf

    Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis

    Get PDF
    We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into either an unstable or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the field, the speed of a front propagating into the unstable state is given either by the so-called linear marginal stability velocity or by the nonlinear marginal stability expression. The cross-over between these two regimes can be tuned by a magnetic field. The influence of initial conditions on the velocity selection problem can also be studied in such experiments. SmC^* therefore offers a unique opportunity to study different aspects of front propagation in an experimental system
    corecore