926 research outputs found
Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman primates
Despite the strong link between childhood maltreatment and psychopathology, the underlying neurodevelopmental mechanisms are poorly understood and difficult to disentangle from heritable and prenatal factors. This study used a translational macaque model of infant maltreatment in which the adverse experience occurs in the first months of life, during intense maturation of amygdala circuits important for stress and emotional regulation. Thus, we examined the developmental impact of maltreatment on amygdala functional connectivity (FC) longitudinally, from infancy through the juvenile period. Using resting state functional magnetic resonance imaging (MRI) we performed amygdala-prefrontal cortex (PFC) region-of-interest and exploratory whole-brain amygdala FC analyses. The latter showed (a) developmental increases in amygdala FC with many regions, likely supporting increased processing of socioemotional-relevant stimuli with age; and (b) maltreatment effects on amygdala coupling with arousal and stress brain regions (locus coeruleus, laterodorsal tegmental area) that emerged with age. Maltreated juveniles showed weaker FC than controls, which was negatively associated with infant hair cortisol concentrations. Findings from the region-of-interest analysis also showed weaker amygdala FC with PFC regions in maltreated animals than controls since infancy, whereas bilateral amygdala FC was stronger in maltreated animals. These effects on amygdala FC development may underlie the poor behavioral outcomes associated with this adverse experience
Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat
Despite the potential to guide clinical management of spinal cord injury and disease, noninvasive methods of monitoring perfusion status of the spinal cord clinically remain an unmet need. In this study, we optimized pseudo-continuous arterial spin labeling (pCASL) for the rodent cervical spinal cord and demonstrate its utility in identifying perfusion deficits in an acute contusion injury model. High-resolution perfusion sagittal images with reduced imaging artifacts were obtained with optimized background suppression and imaging readout. Following moderate contusion injury, perfusion was clearly and reliably decreased at the site of injury. Implementation of time-encoded pCASL confirmed injury site perfusion deficits with blood flow measurements corrected for variability in arterial transit times. The noninvasive protocol of pCASL in the spinal cord can be utilized in future applications to examine perfusion changes after therapeutic interventions in the rat and translation to patients may offer critical implications for patient management.Neuro Imaging Researc
Signatures of chaotic tunnelling
Recent experiments with cold atoms provide a significant step toward a better
understanding of tunnelling when irregular dynamics is present at the classical
level. In this paper, we lay out numerical studies which shed light on the
previous experiments, help to clarify the underlying physics and have the
ambition to be guidelines for future experiments.Comment: 11 pages, 9 figures, submitted to Phys. Rev. E. Figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
Male sex and the risk of childhood cancer: The mediating effect of birth defects
Background: There is a persistent, unexplained disparity in sex ratio among childhood cancer cases, whereby males are more likely to develop most cancers. This male predominance is also seen for most birth defects, which are strongly associated with risk of childhood cancer. We conducted mediation analysis to estimate whether the increased risk of cancer among males is partially explained by birth defect status. Methods: We used a population-based birth cohort with linked data from birth certificates, birth defects registries, and cancer registries from Arkansas, Michigan, North Carolina, and Texas. We conducted counterfactual mediation analysis to estimate the natural direct and indirect effects of sex on cancer risk, modeling birth defect status as mediator. State; birth year; plurality; and maternal race and ethnicity, age, and education were considered confounders. We conducted separate analyses limited to cancers diagnosed younger than 1 year of age. Results: Our dataset included 10 181 074 children: 15 110 diagnosed with cancer, 539 567 diagnosed with birth defects, and 2124 co-occurring cases. Birth defect status mediated 38% of the association between sex and cancer overall. The proportion mediated varied by cancer type, including acute myeloid leukemia (93%), neuroblastoma (35%), and non-Hodgkin lymphoma (6%). Among children younger than 1 year of age at cancer diagnosis, the proportion mediated was substantially higher (82%). Conclusions: Our results suggest that birth defects mediate a statistically significant proportion of the relationship between sex and childhood cancer. The proportion mediated varied by cancer type and diagnosis age. These findings improve our understanding of the causal pathway underlying male sex as a risk factor for childhood cancer
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission
We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced X(sup 2) (sub v) of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis
Deep Inelastic Scattering from off-Shell Nucleons
We derive the general structure of the hadronic tensor required to describe
deep-inelastic scattering from an off-shell nucleon within a covariant
formalism. Of the large number of possible off-shell structure functions we
find that only three contribute in the Bjorken limit. In our approach the usual
ambiguities encountered when discussing problems related to off-shellness in
deep-inelastic scattering are not present. The formulation therefore provides a
clear framework within which one can discuss the various approximations and
assumptions which have been used in earlier work. As examples, we investigate
scattering from the deuteron, nuclear matter and dressed nucleons. The results
of the full calculation are compared with those where various aspects of the
off-shell structure are neglected, as well as with those of the convolution
model.Comment: 36 pages RevTeX, 9 figures (available upon request), ADP-93-210/T128,
PSI-PR-93-13, accepted for publication in Physical Review
Svestka's Research: Then and Now
Zdenek Svestka's research work influenced many fields of solar physics,
especially in the area of flare research. In this article I take five of the
areas that particularly interested him and assess them in a "then and now"
style. His insights in each case were quite sound, although of course in the
modern era we have learned things that he could not readily have envisioned.
His own views about his research life have been published recently in this
journal, to which he contributed so much, and his memoir contains much
additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour
of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a
contribution to a Topical Issue in Solar Physics, based on the presentations
at this meeting (Editors Lyndsay Fletcher and Petr Heinzel
- …