1,171 research outputs found

    Three-dimensional modeling of the HI kinematics of NGC 2915

    Full text link
    The nearby blue compact dwarf, NGC 2915, has its stellar disc embedded in a large, extended (~ 22 B-band scale-lengths) HI disc. New high-resolution HI synthesis observations of NGC 2915 have been obtained with the Australia Telescope Compact Array. These observations provide evidence of extremely complex HI kinematics within the immediate vicinity of the galaxy's star-forming core. We identify and quantify double-peaked HI line profiles near the centre of the galaxy and show that the HI energetics can be accounted for by the mechanical energy output of the central high-mass stellar population within time-scales of 10^6-10^7 yr. Full three-dimensional models of the HI data cube are generated and compared to the observations to test various physical scenarios associated with the high-mass star-forming core of NGC 2915. Purely circular HI kinematics are ruled out together with the possibility of a high-velocity-dispersion inter-stellar medium at inner radii. Radial velocities of ~ 30 km/s are required to describe the central-most HI kinematics of the system. Our results lend themselves to the simple physical scenario in which the young stellar core of the galaxy expels the gas outwards from the centre of the disc, thereby creating a central HI under-density. These kinematics should be thought of as being linked to a central HI outflow rather than a large-scale galactic blow-out or wind.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Paleointensity Record From the 2.7 Ga Stillwater Complex, Montana

    Get PDF
    The record of geomagnetic intensity captured in the 2.7 Ga Stillwater Complex (Montana, USA) provides a statistical description of the Archean geodynamo. We present results of modified Thellier paleointensity experiments on 441 core specimens, 114 of which pass strict reliability criteria. The specimens are from 53 sites spanning most of the Banded Series rocks in the Stillwater Complex. On the basis of thermochronologic and petrologic evidence, we interpret the highest temperature component of remanence to be a late Archean thermoremanence, though the possibility remains that it is a thermochemical remanence. Thermal models indicate that the highest temperature magnetization component at each of the sites averages ∼20–200 ka of geomagnetic secular variation. The suite of sites as distributed through the Banded Series samples a roughly a 1 Ma time interval. The average of the most reliable paleointensity measurements, uncorrected for the effects of anisotropy or cooling rate, is 38.2 ± 11.3 μT (1σ). Remanence anisotropy, cooling rate, and the nonlinear relationship between applied field and thermoremanence have a significant effect on paleointensity results; a corrected average of 30.6 ± 8.8 μT is likely a more appropriate value. Earth\u27s average dipole moment during the late Archean (5.05 ± 1.46 × 1022Am2, λpmag = 44.5°) was well within the range of estimates from Phanerozoic rocks. The distribution of site-mean paleointensities around the mean is consistent with that expected from slow cooling over timescales expected from thermal models and with secular variation comparable to that of the Phanerozoic field

    The accuracy of surrogate decision makers: informed consent in hypothetical acute stroke scenarios

    Full text link
    Abstract Background Over one third of stroke patients have cognitive or language deficits such that they require surrogate consent for acute stroke treatment or enrollment into acute stroke trials. Little is known about the agreement of stroke patients and surrogates in this time-sensitive decision-making process. We sought to determine patient and surrogate agreement in 4 hypothetical acute stroke scenarios. Methods We performed face to face interviews with ED patients at an academic teaching hospital from June to August 2011. Patients and the surrogates they designated were asked to make decisions regarding 4 hypothetical stroke scenarios: 2 were treatment decisions; 2 involved enrollment into a clinical trial. Percent agreement was calculated as measures of surrogate predictive ability. Results A total of 200 patient/surrogate pairs were interviewed. Overall patient/surrogate percent agreement was 76.5%. Agreement for clinical scenarios ranged from 87% to 96% but dropped to 49%-74% for research scenarios. Conclusions Surrogates accurately predict patient preferences for standard acute stroke treatments. However, the accuracy decreases when predicting research participation suggesting that the degree of surrogate agreement is dependent on the type of decision being made. Further research is needed to more thoroughly characterize surrogate decision-making in acute stroke situations.http://deepblue.lib.umich.edu/bitstream/2027.42/112377/1/12873_2013_Article_190.pd

    Star Formation at z~6: The UDF-Parallel ACS Fields

    Full text link
    We report on the i-dropouts detected in two exceptionally deep ACS fields (B_{435}, V_{606}, i_{775}, and z_{850} with 10 sigma limits of 28.8, 29.0, 28.5, and 27.8, respectively) taken in parallel with the UDF NICMOS observations. Using an i-z>1.4 cut, we find 30 i-dropouts over 21 arcmin^2 down to z_AB=28.1, or 1.4 i-dropouts arcmin^{-2}, with significant field-to-field variation (as expected from cosmic variance). This extends i-dropout searches some ~0.9^m further down the luminosity function than was possible in the GOODS field, netting a ~7x increase in surface density. An estimate of the size evolution for UV bright objects is obtained by comparing the composite radial flux profile of the bright i-dropouts (z<27.2) with scaled versions of the HDF-N + HDF-S U-dropouts. The best-fit is found with a (1+z)^{-1.57_{-0.53} ^{+0.50}} scaling in size (for fixed luminosity), extending lower redshift (1<z<5) trends to z~6. Adopting this scaling and the brighter i-dropouts from both GOODS fields, we make incompleteness estimates and construct a z~6 LF in the rest-frame continuum UV (~1350 A) over a 3.5 magnitude baseline, finding a shape consistent with that found at lower redshift. To evaluate the evolution in the LF from z~3.8, we make comparisons against different scalings of a lower redshift B-dropout sample. Though a strong degeneracy is found between luminosity and density evolution, our best-fit model scales as (1+z)^{-2.8} in number and (1+z)^0.1 in luminosity, suggesting a rest-frame continuum UV luminosity density at z~6 which is just 0.38_{-0.07} ^{+0.09}x that at z~3.8. Our inclusion of size evolution makes the present estimate lower than previous z~6 estimates.Comment: 5 pages, 5 figures, accepted for publication in the Astrophysical Journal Letters, labelling to the left-hand axis of Figure 4 correcte

    Effect of Testing and Treatment on Emergency Department Length of Stay Using a National Database

    Full text link
    Objectives:  Testing and treatment are essential aspects of the delivery of emergency care. Recognition of the effects of these activities on emergency department (ED) length of stay (LOS) has implications for administrators planning efficient operations, providers, and patients regarding expectations for length of visit; researchers in creating better models to predict LOS; and policy‐makers concerned about ED crowding. Methods:  A secondary analysis was performed using years 2006 through 2008 of the National Hospital Ambulatory Medical Care Survey (NHAMCS), a nationwide study of ED services. In univariate and bivariate analyses, the authors assessed ED LOS and frequency of testing (blood test, urinalysis, electrocardiogram [ECG], radiograph, ultrasound, computed tomography [CT], or magnetic resonance imaging [MRI]) and treatment (providing a medication or performance of a procedure) according to disposition (discharged or admitted status). Two sets of multivariable models were developed to assess the contribution of testing and treatment to LOS, also stratified by disposition. The first was a series of logistic regression models to provide an overview of how testing and treatment activity affects three dichotomized LOS cutoffs at 2, 4, and 6 hours. The second was a generalized linear model (GLM) with a log‐link function and gamma distribution to fit skewed LOS data, which provided time costs associated with tests and treatment. Results:  Among 360 million weighted ED visits included in this analysis, 227 million (63%) involved testing, 304 million (85%) involved treatment, and 201 million (56%) involved both. Overall, visits with any testing were associated with longer LOS (median = 196 minutes; interquartile range [IQR] = 125 to 305 minutes) than those with any treatment (median = 159 minutes; IQR = 91 to 262 minutes). This difference was more pronounced among discharged patients than admitted patients. Obtaining a test was associated with an adjusted odds ratio (OR) of 2.29 (95% confidence interval [CI] = 1.86 to 2.83) for experiencing a more than 4‐hour LOS, while performing a treatment had no effect (adjusted OR = 0.84; 95% CI = 0.68 to 1.03). The most time‐costly testing modalities included blood test (adjusted marginal effects on LOS = +72 minutes; 95% CI = 66 to 78 minutes), MRI (+64 minutes; 95% CI = 36 to 93 minutes), CT (+59 minutes; 95% CI = 54 to 65 minutes), and ultrasound (US; +56 minutes; 95% CI = 45 to 67 minutes). Treatment time costs were less substantial: performing a procedure (+24 minutes; 95% CI = 20 to 28 minutes) and providing a medication (+15 minutes; 95% CI = 8 to 21 minutes). Conclusions:  Testing and less substantially treatment were associated with prolonged LOS in the ED, particularly for blood testing and advanced imaging. This knowledge may better direct efforts at streamlining delivery of care for the most time‐costly diagnostic modalities or suggest areas for future research into improving processes of care. Developing systems to improve efficient utilization of these services in the ED may improve patient and provider satisfaction. Such practice improvements could then be examined to determine their effects on ED crowding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92123/1/j.1553-2712.2012.01353.x.pd

    The Rich Globular Cluster System of Abell 1689 and the Radial Dependence of the Globular Cluster Formation Efficiency

    Full text link
    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z=0.18), one of the most powerful gravitational lenses known. With 28 HST/ACS orbits in the F814W bandpass, we reach magnitude I_814=29 with >90% completeness and sample the brightest ~5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N(GC_total) = 162,850 GCs within a projected radius of 400kpc. As many as half may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this is by far the largest GC system studied to date. The specific frequency S_N is high, but not uncommon for central galaxies in massive clusters, rising from S_N~5 near the center to ~12 at large radii. Passive galaxy fading would increase S_N by ~20% at z=0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M(GC_total)=3.9x10^10 Msun, is comparable to ~80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.Comment: 13 pages, 11 figures; accepted for publication in Ap

    The Metal-Enriched Outer Disk of NGC 2915

    Full text link
    We present optical emission-line spectra for outlying HII regions in the extended neutral gas disk surrounding the blue compact dwarf galaxy NGC 2915. Using a combination of strong-line R23 and direct oxygen abundance measurements, we report a flat, possibly increasing, metallicity gradient out to 1.2 times the Holmberg radius. We find the outer-disk of NGC 2915 to be enriched to a metallicity of 0.4 Z_solar. An analysis of the metal yields shows that the outer disk of NGC 2915 is overabundant for its gas fraction, while the central star-foming core is similarly under-abundant for its gas fraction. Star formation rates derived from very deep ~14 ks GALEX FUV exposures indicate that the low-level of star formation observed at large radii is not sufficient to have produced the measured oxygen abundances at these galactocentric distances. We consider 3 plausible mechanisms that may explain the metal-enriched outer gaseous disk of NGC 2915: radial redistribution of centrally generated metals, strong galactic winds with subsequent fallback, and galaxy accretion. Our results have implications for the physical origin of the mass-metallicity relation for gas-rich dwarf galaxies.Comment: 11 pages, 4 figures, accepted to ApJ April 8th, 201

    A Gaseous Group with Unusual Remote Star Formation

    Full text link
    We present VLA 21-cm observations of the spiral galaxy ESO 481-G017 to determine the nature of remote star formation traced by an HII region found 43 kpc and ~800 km s^-1 from the galaxy center (in projection). ESO 481-G017 is found to have a 120 kpc HI disk with a mass of 1.2x10^10 Msun and UV GALEX images reveal spiral arms extending into the gaseous disk. Two dwarf galaxies with HI masses close to 10^8 Msun are detected at distances of ~200 kpc from ESO 481-G017 and a HI cloud with a mass of 6x10^7 Msun is found near the position and velocity of the remote HII region. The HII region is somewhat offset from the HI cloud spatially and there is no link to ESO 481-G017 or the dwarf galaxies. We consider several scenarios for the origin of the cloud and HII region and find the most likely is a dwarf galaxy that is undergoing ram pressure stripping. The HI mass of the cloud and Halpha luminosity of the HII region (10^38.1 erg s^-1) are consistent with dwarf galaxy properties, and the stripping can trigger the star formation as well as push the gas away from the stars.Comment: 19 pages, 4 figures, accepted by PAS

    The dark matter content of the blue compact dwarf NGC 2915

    Full text link
    NGC 2915 is a nearby blue compact dwarf with the HI properties of a late-type spiral. Its large, rotating HI disk (extending out to R ~ 22 B-band scale lengths) and apparent lack of stars in the outer HI disk make it a useful candidate for dark matter studies. New HI synthesis observations of NGC 2915 have been obtained using the Australian Telescope Compact Array. These data are combined with high-quality 3.6 μ\mum imaging from the Spitzer Infrared Nearby Galaxies Survey. The central regions of the HI disk are shown to consist of two distinct HI concentrations with significantly non-Gaussian line profiles. We fit a tilted ring model to the HI velocity field to derive a rotation curve. This is used as input for mass models that determine the contributions from the stellar and gas disks as well as the dark matter halo. The galaxy is dark-matter-dominated at nearly all radii. At the last measured point of the rotation curve, the total mass to blue light ratio is ~ 140 times solar, making NGC 2915 one of the darkest galaxies known. We show that the stellar disk cannot account for the steeply-rising portion of the observed rotation curve. The best-fitting dark matter halo is a pseudo-isothermal sphere with a core density ρ00.17±0.03\rho_0\sim 0.17 \pm 0.03 \msun pc3^{-3} and a core radius rc0.9±0.1r_c\sim 0.9 \pm 0.1 kpc.Comment: MNRAS in press. 17 pages, 15 figure
    corecore