2,533 research outputs found

    Problems and Prospects of Interdisciplinarity: The Case of Philosophy of Science

    Get PDF
    In this paper, we discuss some problems and prospects of interdisciplinary encounters by focusing on philosophy of science as a case study. After introducing the case, we give an overview about the various ways in which philosophy of science can be interdisciplinary in Section 2. In Section 3, we name some general problems concerning the possible points of interaction between philosophy of science and the sciences studied. In Section 4 we compare the advantages and risks of interdisciplinarity for individual researchers and institutions. In Section 5, we discuss interdisciplinary PhD programs, in particular concerning two main problems: increased workload and the quality of supervision. In the final Section 6, we look at interdisciplinary careers beyond the PhD

    First-principles study of high conductance DNA sequencing with carbon nanotube electrodes

    Full text link
    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nano-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore both reduce conformational fluctuations and significantly improve the conductance. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several ÎĽ\muA. Below 1 V the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second-largest, cytosine the third and finally thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations. Based on these results we propose a DNA sequencing protocol combining three possible data analysis strategies.Comment: 12 pages, 17 figures, 3 table

    Les neuropathies optiques héréditaires : du signe clinique au diagnostic

    Get PDF
    Inherited optic atrophy must be considered when working up any optic nerve involvement and any systemic disease with signs of optic atrophy, even with a negative family history. There are two classical forms: dominant optic atrophy, characterized by insidious, bilateral, slowly progressive visual loss and temporal disc pallor, and Leber\u27s optic atrophy, characterized by acute loss of central vision followed by the same event in the fellow eye within a few weeks to months, with disc hyperemia in the acute phase. Family history is critical for diagnosis. In the absence of family history, the clinician must rule out an identifiable acquired cause, i.e. toxic, inflammatory, perinatal injury, traumatic or tumoral, with orbital and brain imaging (MRI). Recessive optic atrophies are more rare and more severe and occur as part of multisystemic disorders, particularly Wolfram syndrome (diabetes mellitus, diabetes insipidus, and hearing loss). Effective treatments are limited; alcohol and smoking should be avoided. A cyclosporine trial (taken immediately upon visual loss in the first eye) is in progress in Leber\u27s optic atrophy to prevent involvement of the fellow eye

    Interpretation of Light-Quenching Factor Measurements

    Full text link
    We observe that the pattern of the quenching factors for scintillation light from various ions, recently studied in CaWO4CaWO_4 in connection with dark matter detectors, can be understood as a saturation phenomenon in which the light output is simply proportional to track length, independent of the ion and its energy. This observation is in accord with the high dE/dx limit of Birks' law. It suggests a simple model for the intrinsic resolution of light detectors for low energy ions, which we briefly discuss.Comment: Seven pages, seven figures, some with colo

    Detection of single electron spin resonance in a double quantum dot

    Full text link
    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron as well as the hybridization of two-electron spin states. In this paper, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.Comment: 7 pages, 5 figures. To be published in Journal of Applied Physics, proceedings ICPS 200

    Motility and morphodynamics of confined cells

    Get PDF
    We introduce a minimal hydrodynamic model of polarization, migration, and deformation of a biologicalcell confined between two parallel surfaces. In our model, the cell is driven out of equilibrium by an activecytsokeleton force that acts on the membrane. The cell cytoplasm, described as a viscous droplet in the Darcyflow regime, contains a diffusive solute that actively transduces the applied cytoskeleton force. While fairlysimple and analytically tractable, this quasi-two-dimensional model predicts a range of compelling dynamicbehaviours. A linear stability analysis of the system reveals that solute activity first destabilizes a globalpolarization-translation mode, prompting cell motility through spontaneous symmetry breaking. At higheractivity, the system crosses a series of Hopf bifurcations leading to coupled oscillations of droplet shape andsolute concentration profiles. At the nonlinear level, we find traveling-wave solutions associated with uniquepolarized shapes that resemble experimental observations. Altogether, this model offers an analytical paradigmof active deformable systems in which viscous hydrodynamics are coupled to diffusive force transducers
    • …
    corecore