108 research outputs found

    Characterizing the Risk Profiles of Intensive Care Units

    Get PDF
    OBJECTIVE: To develop a new method to evaluate the performance of individual ICUs through the calculation and visualisation of risk profiles. METHODS: The study included 102,561 patients consecutively admitted to 77 ICUs in Austria. We customized the function which predicts hospital mortality (using SAPS II) for each ICU. We then compared the risks of hospital mortality resulting from this function with the risks which would be obtained using the original function. The derived risk ratio was then plotted together with point-wise confidence intervals in order to visualise the individual risk profile of each ICU over the whole spectrum of expected hospital mortality. MAIN MEASUREMENTS AND RESULTS: We calculated risk profiles for all ICUs in the ASDI data set according to the proposed method. We show examples how the clinical performance of ICUs may depend on the severity of illness of their patients. Both the distribution of the Hosmer-Lemeshow goodness-of-fit test statistics and the histogram of the corresponding P values demonstrated a good fit of the individual risk models. CONCLUSIONS: Our risk profile model makes it possible to evaluate ICUs on the basis of the specific risk for patients to die compared to a reference sample over the whole spectrum of hospital mortality. Thus, ICUs at different levels of severity of illness can be directly compared, giving a clear advantage over the use of the conventional single point estimate of the overall observed-to-expected mortality ratio

    Sepsis Mortality Prediction Based on Predisposition, Infection and Response

    Get PDF
    OBJECTIVE: To empirically test, based on a large multicenter, multinational database, whether a modified PIRO (predisposition, insult, response, and organ dysfunction) concept could be applied to predict mortality in patients with infection and sepsis. DESIGN: Substudy of a multicenter multinational cohort study (SAPS 3). PATIENTS: A total of 2,628 patients with signs of infection or sepsis who stayed in the ICU for >48 h. Three boxes of variables were defined, according to the PIRO concept. Box 1 (Predisposition) contained information about the patient's condition before ICU admission. Box 2 (Injury) contained information about the infection at ICU admission. Box 3 (Response) was defined as the response to the infection, expressed as a Sequential Organ Failure Assessment score after 48 h. INTERVENTIONS: None. MAIN MEASUREMENTS AND RESULTS: Most of the infections were community acquired (59.6%); 32.5% were hospital acquired. The median age of the patients was 65 (50-75) years, and 41.1% were female. About 22% (n=576) of the patients presented with infection only, 36.3% (n=953) with signs of sepsis, 23.6% (n=619) with severe sepsis, and 18.3% (n=480) with septic shock. Hospital mortality was 40.6% overall, greater in those with septic shock (52.5%) than in those with infection (34.7%). Several factors related to predisposition, infection and response were associated with hospital mortality. CONCLUSION: The proposed three-level system, by using objectively defined criteria for risk of mortality in sepsis, could be used by physicians to stratify patients at ICU admission or shortly thereafter, contributing to a better selection of management according to the risk of death

    Modeling in-Hospital Patient Survival During the First 28 Days After Intensive Care Unit Admission: a Prognostic Model for Clinical Trials in General Critically Ill Patients

    Get PDF
    OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior

    Weekends affect mortality risk and chance of discharge in critically ill patients: a retrospective study in the Austrian registry for intensive care.

    Get PDF
    BACKGROUND: In this study, we primarily investigated whether ICU admission or ICU stay at weekends (Saturday and Sunday) is associated with a different risk of ICU mortality or chance of ICU discharge than ICU admission or ICU stay on weekdays (Monday to Friday). Secondarily, we analysed whether weekend ICU admission or ICU stay influences risk of hospital mortality or chance of hospital discharge. METHODS: A retrospective study was performed for all adult patients admitted to 119 ICUs participating in the benchmarking project of the Austrian Centre for Documentation and Quality Assurance in Intensive Care (ASDI) between 2012 and 2015. Readmissions to the ICU during the same hospital stay were excluded. RESULTS: In a multivariable competing risk analysis, a strong weekend effect was observed. Patients admitted to ICUs on Saturday or Sunday had a higher mortality risk after adjustment for severity of illness by Simplified Acute Physiology Score (SAPS) 3, year, month of the year, type of admission, ICU, and weekday of death or discharge. Hazard ratios (95% confidence interval) for death in the ICU following admission on a Saturday or Sunday compared with Wednesday were 1.15 (1.08-1.23) and 1.11 (1.03-1.18), respectively. Lower hazard ratios were observed for dying on a Saturday (0.93 (0.87-1.00)) or Sunday (0.85 (0.80-0.91)) compared with Wednesday. This is probably related to the reduced chance of being discharged from the ICU at the weekend (0.63 (0.62-064) for Saturday and 0.56 (0.55-0.57) for Sunday). Similar results were found for hospital mortality and hospital discharge following ICU admission. CONCLUSIONS: Patients admitted to ICUs at weekends are at increased risk of death in both the ICU and the hospital even after rigorous adjustment for severity of illness. Conversely, death in the ICU and discharge from the ICU are significantly less likely at weekends

    Do acute elevations of serum creatinine in primary care engender an increased mortality risk?

    Get PDF
    Background: The significant impact Acute Kidney Injury (AKI) has on patient morbidity and mortality emphasizes the need for early recognition and effective treatment. AKI presenting to or occurring during hospitalisation has been widely studied but little is known about the incidence and outcomes of patients experiencing acute elevations in serum creatinine in the primary care setting where people are not subsequently admitted to hospital. The aim of this study was to define this incidence and explore its impact on mortality. Methods: The study cohort was identified by using hospital data bases over a six month period. Inclusion criteria: People with a serum creatinine request during the study period, 18 or over and not on renal replacement therapy. The patients were stratified by a rise in serum creatinine corresponding to the Acute Kidney Injury Network (AKIN) criteria for comparison purposes. Descriptive and survival data were then analysed. Ethical approval was granted from National Research Ethics Service (NRES) Committee South East Coast and from the National Information Governance Board. Results: The total study population was 61,432. 57,300 subjects with ‘no AKI’, mean age 64.The number (mean age) of acute serum creatinine rises overall were, ‘AKI 1’ 3,798 (72), ‘AKI 2’ 232 (73), and ‘AKI 3’ 102 (68) which equates to an overall incidence of 14,192 pmp/year (adult). Unadjusted 30 day survival was 99.9% in subjects with ‘no AKI’, compared to 98.6%, 90.1% and 82.3% in those with ‘AKI 1’, ‘AKI 2’ and ‘AKI 3’ respectively. After multivariable analysis adjusting for age, gender, baseline kidney function and co-morbidity the odds ratio of 30 day mortality was 5.3 (95% CI 3.6, 7.7), 36.8 (95% CI 21.6, 62.7) and 123 (95% CI 64.8, 235) respectively, compared to those without acute serum creatinine rises as defined. Conclusions: People who develop acute elevations of serum creatinine in primary care without being admitted to hospital have significantly worse outcomes than those with stable kidney function

    A Comparison of Administrative and Physiologic Predictive Models in Determining Risk Adjusted Mortality Rates in Critically Ill Patients

    Get PDF
    Hospitals are increasingly compared based on clinical outcomes adjusted for severity of illness. Multiple methods exist to adjust for differences between patients. The challenge for consumers of this information, both the public and healthcare providers, is interpreting differences in risk adjustment models particularly when models differ in their use of administrative and physiologic data. We set to examine how administrative and physiologic models compare to each when applied to critically ill patients.We prospectively abstracted variables for a physiologic and administrative model of mortality from two intensive care units in the United States. Predicted mortality was compared through the Pearsons Product coefficient and Bland-Altman analysis. A subgroup of patients admitted directly from the emergency department was analyzed to remove potential confounding changes in condition prior to ICU admission.We included 556 patients from two academic medical centers in this analysis. The administrative model and physiologic models predicted mortalities for the combined cohort were 15.3% (95% CI 13.7%, 16.8%) and 24.6% (95% CI 22.7%, 26.5%) (t-test p-value<0.001). The r(2) for these models was 0.297. The Bland-Atlman plot suggests that at low predicted mortality there was good agreement; however, as mortality increased the models diverged. Similar results were found when analyzing a subgroup of patients admitted directly from the emergency department. When comparing the two hospitals, there was a statistical difference when using the administrative model but not the physiologic model. Unexplained mortality, defined as those patients who died who had a predicted mortality less than 10%, was a rare event by either model.In conclusion, while it has been shown that administrative models provide estimates of mortality that are similar to physiologic models in non-critically ill patients with pneumonia, our results suggest this finding can not be applied globally to patients admitted to intensive care units. As patients and providers increasingly use publicly reported information in making health care decisions and referrals, it is critical that the provided information be understood. Our results suggest that severity of illness may influence the mortality index in administrative models. We suggest that when interpreting "report cards" or metrics, health care providers determine how the risk adjustment was made and compares to other risk adjustment models

    What is the empirical evidence that hospitals with higher-risk adjusted mortality rates provide poorer quality care? A systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite increasing interest and publication of risk-adjusted hospital mortality rates, the relationship with underlying quality of care remains unclear. We undertook a systematic review to ascertain the extent to which variations in risk-adjusted mortality rates were associated with differences in quality of care.</p> <p>Methods</p> <p>We identified studies in which risk-adjusted mortality and quality of care had been reported in more than one hospital. We adopted an iterative search strategy using three databases – Medline, HealthSTAR and CINAHL from 1966, 1975 and 1982 respectively. We identified potentially relevant studies on the basis of the title or abstract. We obtained these papers and included those which met our inclusion criteria.</p> <p>Results</p> <p>From an initial yield of 6,456 papers, 36 studies met the inclusion criteria. Several of these studies considered more than one process-versus-risk-adjusted mortality relationship. In total we found 51 such relationships in a widen range of clinical conditions using a variety of methods. A positive correlation between better quality of care and risk-adjusted mortality was found in under half the relationships (26/51 51%) but the remainder showed no correlation (16/51 31%) or a paradoxical correlation (9/51 18%).</p> <p>Conclusion</p> <p>The general notion that hospitals with higher risk-adjusted mortality have poorer quality of care is neither consistent nor reliable.</p

    Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control

    Get PDF
    Journal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore