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Abstract
Objective: The objective of the study was to develop a model for estimating patient 28-day in-hospital
mortality using 2 different statistical approaches.
Design: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality
using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model.
Setting: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology
Score (SAPS) 3 cohort.
Patients and Participants: Patients (n = 17138) were from the SAPS 3 database with follow-up data
pertaining to the first 28 days in hospital after ICU admission.
Interventions: None.
Measurements and Results: The database was divided randomly into 5 roughly equal-sized parts (at the
ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of
the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU
admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and
outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score
calibrated to vital status at hospital discharge, both on the general population and in major subgroups.
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Conclusions:Both statistical methods can be used tomodel the 28-day in-hospital mortality better than the
SAPS 3 admission model. However, because the logistic regression approach is specifically designed to
forecast 28-day mortality, and given the high uncertainty associated with the assumption of the
proportionality of risks in the Cox model, the logistic regression approach proved to be superior.
© 2008 Elsevier Inc. All rights reserved.
1. Introduction European Society for Intensive Care Medicine (ESICM)
All general outcome prediction models in intensive care
aim at predicting vital status at hospital discharge on the basis
of a given set of variables collected at admission or shortly
thereafter [1,2]. However, regulatory agencies such as the US
Food and Drug Administration often rely mainly on outcome
data pertaining to vital status at 28 days after intensive care
unit (ICU) admission. This holds especially true for clinical
studies in which the statistical model used should be able to
control for differences in severity among different groups of
patients with different outcomes or assigned to different
treatments. Survival at 28 days after ICU admission is thus the
most frequently used end point in randomized clinical trials
conducted in critically ill patients, for example, those
studying new therapeutic approaches for patients with sepsis
or septic shock. For that reason, a prognostic tool that is able
to model survival during this limited time frame would be
very useful in comparing the ratio of observed to expected
mortality in different groups of patients, stratified by one
intervention. Until now, no specific instrument has been
developed and published for this purpose.

Moreover, current outcome prediction models were built
almost always by logistic regression. Such models use a
series of variables, collected at the patient level, that measure
the degree of physiological reserve (age, comorbid diseases),
the reasons for and circumstances of ICU admission, and the
presence and degree of organ dysfunction to model vital
status at hospital discharge [1,2].

Crude mortality rates are the most commonly used
estimators of mortality; the Kaplan-Meier estimator is used
usually only to display the distribution of survival times.
Logistic regression models are widely used to define factors
related to the probability of death, whereas Cox models are
more often used to model the instantaneous risk of nonfatal
outcomes [3]. Whether one of these 2 models is more
appropriate in identifying prognostic factors in intensive care
is the subject of intense debate [4].

The objective of this study was thus to develop a model to
predict 28-day in-hospital mortality using 2 different
statistical approaches.

2. Materials and methods

2.1. Project organization and data collection

The SAPS 3 project was conducted by the SAPS 3
Outcomes Research Group. The project was endorsed by the
(www.esicm.org) and conducted in cooperation with the
Section on Health Services Research and Outcome of the
ESICM. The organization of the study, methods used for data
collection, and details about the variables collected have
been described elsewhere [5].

Data were collected at ICU admission; on days 1, 2, and 3;
and on the last day of the ICU stay. All patients were subject to
mandatory follow-up until 28 days after ICU admission or until
hospital discharge, whichever came first. Patients remaining in
the hospital at 90 days were classified as being “still in the
hospital.” Data were collected from all consecutively admitted
patients between 14 October and 15 December 2002.
2.2. Statistical analysis

Statistical analysis was performed using the SAS system,
version 9.1 (SAS Institute Inc, Cary, NC). A P value b .05 was
considered significant. Unless otherwise specified, results are
expressed as median and quartiles. Observed-to-expected
mortality ratios were calculated by dividing the number of
observed deaths per group by the number of expected deaths
per group (as predicted by the SAPS II). To test for statistical
significance, we calculated 95% confidence intervals accord-
ing to the method described by Hosmer and Lemeshow [6].

For development of the SAPS 3 28-day score, 2 strategies
were applied (1) to model vital status at 28 days as a binary
outcome (alive/dead), fitting an outcome prediction model
using logistic regression with random effects, and (2) to
develop a multilevel proportional hazards model, where all
patients discharged from hospital were kept in the risk set for
28-day in-hospital mortality (modeling transition probabilities
according to the subdistribution of Fine and Gray [7]).

In both cases, for cross-validation of the models, the
database was divided randomly into 5 roughly equal-sized
parts (at ICU level). It was thus possible to run the model-
building procedure 5 times, each time taking four fifths of the
sample as a development set and the remaining fifth as the
validation set. The Hosmer-Lemeshow goodness-of-fit Ĥ
statistic andĈ statistic [6] were used to evaluate the calibration
of the model. Discrimination was tested by measuring the area
under the receiver operating characteristic (aROC) curve, as
described byHanley andMcNeil [8]. Expected survival curves
in subgroups were calculated by averaging predicted survival
curves for the individual patients in the subgroups.

In both cases, multilevel modeling (also called hierarch-
ical modeling) has been applied to account for the variations
among centers.

http://www.esicm.org


Table 2 The ICU discharge and outcome data for the SAPS 3
28-day cohort (n = 17138)

Patient characteristics n %

ICU LOS (d) (median, Q1-Q3) 2 (1-6)
ICU discharge destination
Home 372 2.2
Same hospital 12776 74.5
Other hospital 887 5.2
Missing data 3103 18.1
Intrahospital discharge
Emergency room 51 0.3
Intermediate care unit/
High-dependency unit

1966 11.5
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3. Results

From the basic SAPS 3 cohort (19577 patients), we
included 17138 patients (from 305 ICUs) for whom there
were follow-up data pertaining to the first 28-days in-hospital
after ICU admission (admission-, discharge-, and outcome-
data for these patients are presented in Tables 1 and 2). At
28 days after ICU admission, 19.98% of the patients were still
in the hospital.

Not surprisingly, the SAPS 3 admission score (which
was developed for a different outcome variable, namely,
vital status at hospital discharge) could not reliably predict
vital status at day 28 after ICU admission, either for the
Table 1 The ICU admission data for the SAPS 3 28-day
cohort (n = 17138)

Patient characteristics n %

Sex
Female 6735 39.3
Male 10390 60.6
Missing data 13 0.1
Age (y) (median, Q1-Q3) 64 (49-74)
Initial location
Home 2398 14.0
Same hospital 12294 71.7
Chronic care facility 66 0.4
Public place 441 2.6
Other hospital 1846 10.8
Other 60 0.4
Missing data 33 0.2
Intrahospital location before ICU admission
Emergency room 4755 27.7
Intermediate care unit/High-dependency
unit

494 2.9

Operative room 6559 38.3
Other 423 2.5
Other ICU 625 3.6
Recovery room 397 2.3
Ward 3086 18.0
Missing data 799 4.7
ICU admission status
Planned 5688 33.2
Unplanned 11060 64.5
Missing 390 2.3
Acute infection at ICU admission
No infection 13223 77.2
Clinically improbable/colonization 300 1.8
Clinically probable/documented 2488 14.5
Microbiologically documented 1114 6.5
Missing data 13 0.1
Surgical status
No surgical procedure 7474 43.6
Scheduled surgery 5796 33.8
Emergency surgery 3011 17.6
Missing data 857 5.0

Q1-Q3 indicates first to third quartiles.

Other 262 1.5
Other ICU 504 2.9
Recovery room 220 1.3
Ward 10483 61.2
Missing data 3652 21.3
ICU discharge status
Planned discharge 12590 73.5
Unplanned discharge 1480 8.6
Missing data 3068 17.9
Risk adjustment
SOFA score (median, Q1-Q3) 9 (7-11)
Outcome
ICU mortality 17.4

LOS indicates length of stay.
global cohort (Hosmer-Lemeshow goodness-of-fit test Ĥ,
179.86 [P b .01]; Hosmer-Lemeshow goodness-of-fit test
Ĉ, 173.29 [P b .01]; aROC curve, 0.837) or for major
subgroups (electronic supplementary material [ESM],
Appendix L).
3.1. Modeling 28-days after ICU admission
in-hospital vital status as a binary outcome
(alive/dead)

To estimate vital status (alive or dead) of patients at
28 days after ICU admission, we developed an outcome
prediction model using logistic regression with random
effects. All the procedures for data handling were those
used in the development of the SAPS 3 admission score
as described before [2]. The final score sheet is presented
in Tables 3 and 4, and the corresponding estimated and
P values are given in the ESM, Appendix D. The
relationship between the SAPS 3 28-day score and in-
hospital vital status at 28 days after ICU admission is
given by the following equation:

Logit ¼ �26:2477þ ln SAPS 3 28-day scoreþ 4:5973ð Þ
� 6:0521



Table 3 The SAPS 3 28-day score sheet of the multilevel logistic regression model

Part 1

Box I 4 0 3 4 5 6 7 8 11 14 17

Age (y) b40 ≥40-b60 ≥60 b70 ≥70
b75

≥75
b80

≥80

Comorbidities Cancer
therapy

Chronic heart
failure (NYHA
IV)

Cirrhosis,
AIDS a

Cancer

BMI b18.5 ≥18.5
LOS before ICU
admission (d)

b14 ≥14

Intrahospital location
before ICU admission

Emergency
room

Other ICU,
other a

Use of major therapeutic
options before ICU
admission

Vasoactive
drugs

Box II 0 2 3 4 6

ICU admission: planned
or unplanned

Unplanned

Reason(s) for ICU
admission

See
part 2

Surgical status at ICU
admission

Scheduled surgery No surgery,
emergency
surgery a

Anatomical site of
surgery

See
part 2

Acute infection at ICU
admission

Pneumonia Nosocomial
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Box III 14 10 9 7 6 5 3 2 0 2 3 4 6 7

Estimated Glasgow
Coma Scale (lowest)
(points)

3-4 5 6 ≥7

Total bilirubin (highest)
(mg/dL)

b2 ≥2

Body temperature
(highest) (°C)

b35 ≥35

Creatinine (highest)
(mg/dL)

b1.2 ≥1.2-
b2

≥2

Heart rate (highest)
(beats/min)

b120 ≥120-
b160

≥160

Leukocytes (lowest) (g/
L)

b15 ≥15

Hydrogen ion
concentration (highest)
(pH)

b7.30 ≥7.30

Platelets (lowest) (g/L) b20 ≥20-b50 ≥50-b100 ≥100
Systolic blood pressure
(lowest) (mm Hg)

b40 ≥40-b70 ≥70-b120 ≥120

Oxygenation PaO2/FiO2
b100 and
MV

PaO2 b60 and no MV
__________
PaO2/FiO2
≥100 and MV

PaO2
≥60 and
no MV

NYHA indicates New York Heart Association; BMI, body mass index.
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ig. 1 Goodness-of-fit for the multilevel logistic regression
odel in the whole data set. Top, Patients are divided into 10
qual groups according to the estimated risk of death (Ĥ test); test
tatistic: 5.83, P = .83. Bottom, Patients are divided into 10 equal
roups according to the number of patients (Ĉ test); test statistic:

13.28, P = .21.

Table 4 The SAPS 3 28-day score sheet of the multilevel
logistic regression model

Box II Points

ICU admission a 20

Reason(s) for ICU admission
Cardiovascular
Rhythm disturbances −5
Hypovolemic hemorrhagic shock, hypovolemic
nonhemorrhagic shock

4

Septic shock 5

Anaphylactic and mixed and undefined shock 6
Cardiogenic shock 8
Neurologic
Focal neurologic deficit (hemiplegia, paraplegia,
tetraplegia)

5

Intracranial mass effect 10
Hepatic
Liver failure 6
Digestive
Severe pancreatitis 7

Type and anatomical site of surgery
Transplantation: liver, kidney, pancreas, kidney and
pancreas, other

−15

Trauma: multiple −12
Trauma: other, isolated (includes thorax,
abdomen, limb)

−5

Heart surgery: CABG without
valvular repair

−4

Neurosurgery: cerebrovascular accident 5
Upper gastrointestinal surgery 4

CABG, coronary artery bypass graft.
a Every patient gets an offset of 20 points for being admitted (to

avoid negative scores).
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and the probability of in-hospital mortality at the 28 days
after ICU admission is given by the following equation:

Probability of death ¼ elogit

1þ elogit:

The relationship between the SAPS 3 28-day score and
the probability of death in the hospital is shown in Fig. 1.
Overall, deviations between observed and expected out-
comes across all of the strata were not outside sampling
variability, as demonstrated by a Hosmer-Lemeshow good-
ness-of-fit test Ĥ of 14.03 (P = .17) and a Hosmer-
Lemeshow goodness-of-fit test Ĉ of 9.39 (P = .50).
Calibration curves in major patient subgroups are presented
in the ESM, Appendix E.

The overall discriminatory capability of the model, as
measured by the aROC curve, was 0.837, very similar to the
SAPS 3 admission score [2].

Customized equations for each major geographical area
are presented in the ESM, Appendix F. Observed-to-
expected mortality ratios per geographical area (Appendix
G) and per country (Appendix H), together with the
respective calibration curves and aROC curves (Appendix I
and J), can also be found in the ESM.

3.2. Modeling survival curves by developing a
multilevel Cox proportional hazards model using
the Fine and Gray technique

Using the proportional hazards model, we fitted a
multivariate multilevel model. The coefficients are presented
in Appendix K of the ESM. The score sheet for the
multiplicative exponential predictor in the hazard function
developed by this technique is presented in Appendix L. The
expected survivor function cannot be calculated without
giving the estimates of the baseline hazard.

However, the degree of correspondence between the
observed (in our situation, identical to the Kaplan-Meier
estimate) and expected survival curves is shown in Fig. 2.
Other curves for major subgroups can be found in
the ESM, Appendix M. As for the logistic regression
with random effects model, the fit was reasonable in
all the development and validation samples and in all
patient subgroups.
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The survivor rates obtained by multilevel logistic regres-
sion, the Cox proportional hazards model, and Kaplan-Meier
estimates in the general population and in major subgroups
are compared in Table 5.
Fig. 2 Degree of correspondence between the observed and expecte
4. Discussion

All currently used outcome prediction models in
intensive care use a series of variables (collected at the
d survival curves in the 5 development and validation samples.



Fig. 2 (continued).
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patient level) that measure the degree of physiological
reserve (age, comorbid diseases), the reasons and circum-
stances of ICU admission, and the presence and degree of
organ dysfunction to model vital status at hospital discharge.
Logistic regression is the primary model building technique
that is used to predict the outcome of our patients. One of
the main shortcomings of this technique, however, is the
potential violation of conditional independence in the
outcome of interest [9,10] due to the hierarchic nature of
the data. Although the logistic regression model is widely
used to define factors related to the probability of death, the
Cox model is more often used to model the instantaneous
risk of nonfatal outcomes.

Actually, the 2 approaches differ in terms of sampling
space and entail some simplifications. Thus, the choice of
model to use mostly depends on the researcher's intentions.
Logistic regression aims at estimating and explaining the
probability of the event of interest in a population where all
patients are observed over the same period. However, this
type ofmodel is frequently used to express the probability of a
certain vital status (death) at a variable point in time (date of
hospital discharge, which varies among different patients).
Therefore, it is usually assumed that length of stay in the ICU
does not alter the statistical inference with regard to the
probability of death and that time to the event (death) is not
important. This assumption is probably not valid; and thus,
the use of this method for the specific purpose is questionable.

The Cox model, on the other hand, focuses on modeling a
survival function or, conversely, on the distribution of times
to the outcome, taking into account the actual individual
observation periods. Afterward, this type of model expresses
the conditional probability that a subject will develop the
outcome of interest per unit of time. The problem of this
methodology is an assumption that is frequently not met,
namely, that the relative hazards are constant over time—the
so-called proportional hazards assumption: that at any time
the ratio of the hazard of dying between different risk groups
is assumed to be constant. This is certainly not the case in
intensive care. Here we have risk groups with high hazards at
the beginning, but low hazards if the initial period has been
survived, as contrasted to other subgroups in which the
hazard may increase with increasing time.



Table 5 Comparison of the survivor rates obtained by
logistic regression with random effects, the multilevel Cox
proportional hazards model, and Kaplan-Meier estimates in
the general population and in major patient subgroups

Subgroup n Survivor rate

Vital status
at 28 d

LR Cox

Whole data set 17138 0.80 0.80 0.79
Surgical status
Nonoperative 8331 0.73 0.73 0.72
Scheduled 5796 0.92 0.92 0.92
Emergency 3011 0.75 0.74 0.75
Trauma 1469 0.82 0.83 0.80
Infection
No infection 13663 0.83 0.83 0.83
Community acquired 2302 0.68 0.69 0.68
Hospital acquired 1173 0.59 0.59 0.64
Risk (ICU)
Low 5665 0.91 0.85 0.85
Middle 5741 0.82 0.81 0.81
High 5732 0.66 0.73 0.73

LR indicates logistic regression.
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To deal with this assumption, several methods have been
described, such as the use of the subdistribution function
(also called the cumulative incidence function) as an estimate
of the probability of the outcome of interest [7]. This
approach was recently followed by Resche-Rigon and
coworkers in a small sample of 203 mechanically ventilated
patients with reasonable preliminary results [4]. Although
some other alternatives have been suggested [11,12] and
even preliminarily tested [13,14], no definitive answer for
this problem has yet emerged.

Our results provide evidence that logistic regression
performs better to forecast vital status at day 28 after ICU
admission in this sample. Despite the methodological
problems of logistic regression models, as explained above,
this seems not so surprising: Cox models are not intended to
predict the value of the survival curve at a single time point
—in contrast to logistic regression models, which aim to
predict one certain value of the survival curve. A further
strength of the Cox model is the ability of having the
possibility to use information from patients lost to follow-up,
censoring them at the point of discharge from ICU,
something that cannot be done with logistic regression.

It has to be noted that the selection and weight of the
variables estimated by using models of vital status at hospital
discharge or in hospital 28 days after ICU admission vital
status are different. This has to do with the different sampling
intervals and also the different outcome variables studied.
This is an important issue because it might explain the often
poor performance of outcome prediction models, developed
to estimate vital status at hospital discharge, when used to
predict vital status at day 28. The PROWESS study for
example used the Acute Physiology and Chronic Health
Evaluation II scores to control for severity of illness when
analyzing in-hospital outcome at 28 days after ICU admission
[15]. The Acute Physiology and Chronic Health Evaluation II
score, however, was developed to forecast vital status at
hospital discharge and was clearly demonstrated not to
control adequately for severity of illness 28 days after ICU
admission [16]. However, having only 28-day in-hospital
mortality (as opposed to true 28-day mortality as used in most
randomized controlled trials and by the regulators) is
certainly a limitation of this study. The development of a
model based on true 28-day mortality thus constitutes an area
for future research.

In conclusion, our results demonstrate the need for
specific outcome prediction instruments, such as the SAPS
3 28-day score, to estimate in-hospital vital status at 28 days
after ICU admission. According to our results, both models
(logistic regression or Cox) are suitable; thus, the choice
depends on the specific circumstances.
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