3,711 research outputs found

    Pinning an Ion with an Intracavity Optical Lattice

    Full text link
    We report one-dimensional pinning of a single ion by an optical lattice. The lattice potential is produced by a standing-wave cavity along the rf-field-free axis of a linear Paul trap. The ion's localization is detected by measuring its fluorescence when excited by standing-wave fields with the same period, but different spatial phases. The experiments agree with an analytical model of the localization process, which we test against numerical simulations. For the best localization achieved, the ion's average coupling to the cavity field is enhanced from 50% to 81(3)% of its maximum possible value, and we infer that the ion is bound in a lattice well with over 97% probability.Comment: 5 pages, 4 figures; Text edited for clarity, results unchange

    Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction

    Full text link
    We study the effects of a static electric field on the photoassociation of a heteronuclear atom-pair into a polar molecule. The interaction of permanent dipole moment with a static electric field largely affects the ground state continuum wave function of the atom-pair at short separations where photoassociation transitions occur according to Franck-Condon principle. Electric field induced anisotropic interaction between two heteronuclear ground state atoms leads to scattering resonances at some specific electric fields. Near such resonances the amplitude of scattering wave function at short separation increases by several orders of magnitude. As a result, photoaasociation rate is enhanced by several orders of magnitude near the resonances. We discuss in detail electric field modified atom-atom scattering properties and resonances. We calculate photoassociation rate that shows giant enhancement due to electric field tunable anisotropic resonances. We present selected results among which particularly important are the excitations of higher rotational levels in ultracold photoassociation due to electric field tunable resonances.Comment: 14 pages,9 figure

    Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits

    Full text link
    We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information.Comment: 12 page

    The PCA Lens-Finder: application to CFHTLS

    Full text link
    We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Component Analysis of the galaxy images, ensuring a clean removal of the light profile. Lensed features are searched for in the residual images using the clustering topometric algorithm DBSCAN. We find 1098 lens candidates that we inspect visually, leading to a cleaned sample of 109 new lens candidates. Using realistic image simulations we estimate the completeness of our sample and show that it is independent of source surface brightness, Einstein ring size (image separation) or lens redshift. We compare the properties of our sample to previous lens searches in CFHTLS. Including the present search, the total number of lenses found in CFHTLS amounts to 678, which corresponds to ~4 lenses per square degree down to i=24.8. This is equivalent to ~ 60.000 lenses in total in a survey as wide as Euclid, but at the CFHTLS resolution and depth.Comment: 21 pages, 12 figures, accepted for publication on A&

    Dispersive Optical Interface Based on Nanofiber-Trapped Atoms

    Full text link
    We dispersively interface an ensemble of one thousand atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally-asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of \sim\,1\,mrad at a detuning of six times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to non-destructively determine the number of atoms.Comment: 4 pages, 4 figure

    Fermi Surface of Metallic V2_2O3_3 from Angle-Resolved Photoemission: Mid-level Filling of egπe_g^{\pi} Bands

    Get PDF
    Using angle resolved photoemission spectroscopy (ARPES) we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V2_2O3_3. Along the cc-axis we observe both an electron pocket and a triangular hole-like FS topology, showing that both V 3dd a1ga_{1g} and egπe_g^{\pi} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.Comment: 5 pages, 4 figures plus supplement 12 pages, 3 figures, 1 tabl

    Transverse laser cooling of a thermal atomic beam of dysprosium

    Full text link
    A thermal atomic beam of dysprosium (Dy) atoms is cooled using the 4f106s2(J=8)4f106s6p(J=9)4f^{10}6s^2 (J=8) \to 4f^{10}6s6p (J=9) transition at 421 nm. The cooling is done via a standing light wave orthogonal to the atomic beam. Efficient transverse cooling to the Doppler limit is demonstrated for all observable isotopes of dysprosium. Branching ratios to metastable states are demonstrated to be <5×104<5\times10^{-4}. A scheme for enhancement of the nonzero-nuclear-spin-isotope cooling, as well as a method for direct identification of possible trap states, is proposed.Comment: 5 pages, 4 figures v2: 7 pages, 7 figure

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201

    Critical behavior of repulsive linear kk-mers on triangular lattices

    Full text link
    Monte Carlo (MC) simulations and finite-size scaling analysis have been carried out to study the critical behavior in a submonolayer two-dimensional gas of repulsive linear kk-mers on a triangular lattice at coverage k/(2k+1)k/(2k+1). A low-temperature ordered phase, characterized by a repetition of alternating files of adsorbed kk-mers separated by k+1k+1 adjacent empty sites, is separated from the disordered state by a order-disorder phase transition occurring at a finite critical temperature, TcT_c. The MC technique was combined with the recently reported Free Energy Minimization Criterion Approach (FEMCA), [F. Rom\'a et al., Phys. Rev. B, 68, 205407, (2003)], to predict the dependence of the critical temperature of the order-disorder transformation. The dependence on kk of the transition temperature, Tc(k)T_c(k), observed in MC is in qualitative agreement with FEMCA. In addition, an accurate determination of the critical exponents has been obtained for adsorbate sizes ranging between k=1k=1 and k=3k=3. For k>1k>1, the results reveal that the system does not belong to the universality class of the two-dimensional Potts model with q=3q=3 (k=1k=1, monomers). Based on symmetry concepts, we suggested that the behavior observed for k=1,2k=1, 2 and 3 could be generalized to include larger particle sizes (k2k \geq 2).Comment: 17 pages, 13 figure
    corecore