33 research outputs found

    Knowledge-defined networking : a machine learning based approach for network and traffic modeling

    Get PDF
    The research community has considered in the past the application of Machine Learning (ML) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this thesis, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of ML techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and ML, and provide use-cases that illustrate its applicability and benefits. We also present some relevant use-cases, in which ML tools can be useful. We refer to this new paradigm as Knowledge-Defined Networking (KDN). In this context, ML can be used as a network modeling technique to build models that estimate the network performance. Network modeling is a central technique to many networking functions, for instance in the field of optimization. One of the objective of this thesis is to provide an answer to the following question: Can neural networks accurately model the performance of a computer network as a function of the input traffic?. In this thesis, we focus mainly on modeling the average delay, but also on estimating the jitter and the packets lost. For this, we assume the network as a black-box that has as input a traffic matrix and as output the desired performance matrix. Then we train different regressors, including deep neural networks, and evaluate its accuracy under different fundamental network characteristics: topology, size, traffic intensity and routing. Moreover, we also study the impact of having multiple traffic flows between each pair of nodes. We also explore the use of ML techniques in other network related fields. One relevant application is traffic forecasting. Accurate forecasting enables scaling up or down the resources to efficiently accommodate the load of traffic. Such models are typically based on traditional time series ARMA or ARIMA models. We propose a new methodology that results from the combination of an ARIMA model with an ANN. The Neural Network greatly improves the ARIMA estimation by modeling complex and nonlinear dependencies, particularly for outliers. In order to train the Neural Network and to improve the outliers estimation, we use external information: weather, events, holidays, etc. The main hypothesis is that network traffic depends on the behavior of the end-users, which in turn depend on external factors. We evaluate the accuracy of our methodology using real-world data from an egress Internet link of a campus network. The analysis shows that the model works remarkably well, outperforming standard ARIMA models. Another relevant application is in the Network Function Virtualization (NFV). The NFV paradigm makes networks more flexible by using Virtual Network Functions (VNF) instead of dedicated hardware. The main advantage is the flexibility offered by these virtual elements. However, the use of virtual nodes increases the difficulty of modeling such networks. This problem may be addressed by the use of ML techniques, to model or to control such networks. As a first step, we focus on the modeling of the performance of single VNFs as a function of the input traffic. In this thesis, we demonstrate that the CPU consumption of a VNF can be estimated only as a function of the input traffic characteristics.L'aplicació de tècniques d'aprenentatge automàtic (ML) pel control i operació de xarxes informàtiques ja s'ha plantejat anteriorment per la comunitat científica. Un exemple important és "Knowledge Plane", proposat per D. Clark et al. Tot i això, aquestes propostes no s'han utilitzat ni implementat mai en aquest camp. En aquesta tesi, explorem els motius que han fet impossible l'adopció fins al present, i que ara en permeten la implementació. El principal motiu és l'adopció de dos nous paradigmes: Software-Defined Networking (SDN) i Network Analytics (NA), que permeten la utilització de tècniques d'aprenentatge automàtic en el context de control i operació de xarxes informàtiques. En aquesta tesi, es descriu aquest paradigma, que aprofita les possibilitats ofertes per SDN, per NA i per ML, i s'expliquen aplicacions en el món de la informàtica i les comunicacions on l'aplicació d'aquestes tècniques poden ser molt beneficioses. Hem anomenat a aquest paradigma Knowledge-Defined Networking (KDN). En aquest context, una de les aplicacions de ML és el modelatge de xarxes informàtiques per estimar-ne el comportament. El modelatge de xarxes és un camp de recerca important el aquest camp, i que permet, per exemple, optimitzar-ne el seu rendiment. Un dels objectius de la tesi és respondre la següent pregunta: Pot una xarxa neuronal modelar de manera acurada el comportament d'una xarxa informàtica en funció del tràfic d'entrada? Aquesta tesi es centra principalment en el modelatge del retard mig (temps entre que s'envia i es rep un paquet). També s'estudia com varia aquest retard (jitter) i el nombre de paquets perduts. Per fer-ho, s'assumeix que la xarxa és totalment desconeguda i que només es coneix la matriu de tràfic d'entrada i la matriu de rendiment com a sortida. Es fan servir diferents tècniques de ML, com ara regressors lineals i xarxes neuronals, i se n'avalua la precisió per diferents xarxes i diferents configuracions de xarxa i tràfic. Finalment, també s'estudia l'impacte de tenir múltiples fluxos entre els parells de nodes. En la tesi, també s'explora l'ús de tècniques d¿aprenentatge automàtic en altres camps relacionats amb les xarxes informàtiques. Un cas rellevant és la predicció de tràfic. Una bona estimació del tràfic permet preveure la utilització dels diversos elements de la xarxa i optimitzar-ne el seu rendiment. Les tècniques tradicionals de predicció de tràfic es basen en tècniques de sèries temporals, com ara models ARMA o ARIMA. En aquesta tesis es proposa una nova metodologia que combina un model ARIMA amb una xarxa neuronal. La xarxa neuronal millora la predicció dels valors atípics, que tenen comportament complexos i no lineals. Per fer-ho, s'incorpora a l'anàlisi l'ús d'informació externa, com ara: informació meteorològica, esdeveniments, vacances, etc. La hipòtesi principal és que el tràfic de xarxes informàtiques depèn del comportament dels usuaris finals, que a la vegada depèn de factors externs. Per això, s'avalua la precisió de la metodologia presentada fent servir dades reals d'un enllaç de sortida de la xarxa d'un campus. S'observa que el model presentat funciona bé, superant la precisió de models ARIMA estàndards. Una altra aplicació important és en el camp de Network Function Virtualization (NFV). El paradigma de NFV fa les xarxes més flexibles gràcies a l'ús de Virtual Network Functions (VNF) en lloc de dispositius específics. L'avantatge principal és la flexibilitat que ofereixen aquests elements virtuals. Per contra, l'ús de nodes virtuals augmenta la dificultat de modelar aquestes xarxes. Aquest problema es pot estudiar també mitjançant tècniques d'aprenentatge automàtic, tant per modelar com per controlar la xarxa. Com a primer pas, aquesta tesi es centra en el modelatge del comportament de VNFs treballant soles en funció del tràfic que processen. Concretament, es demostra que el consum de CPU d'una VNF es pot estimar a partir a partir de diverses característiques del tràfic d'entrada.Postprint (published version

    Capacity and delay of bacteria-based communication in nanonetworks

    Get PDF
    Analysis of the capacity and the delay of a bacteria-based communication system in the nano-scaleProjecte realitzat mitjançant programa de mobilitat. SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING. GEORGIA INSTITUTE OF TECHNOLOGYEnglish: the objective is to perform a theoretical analysis of the capacity and the delay on flagellated bacteria communication.Castellano: el objetivo es hacer un análisis de la capacidad y del retraso de las comunicaciones basadas en bacterias flageladas.Català: l'objectiu és dur a terme una anàlisi de la capacitat i del retard de les comunicacions basades en bacteris flagel·lats

    Pulse interspersing in static multipath chip environments for Impulse Radio communications

    Get PDF
    Communications are becoming the bottleneck in the performance of Chip Multiprocessor (CMP). To address this issue, the use of wireless communications within a chip has been proposed, since they offer a low latency among nodes and high reconfigurability. The chip scenario has the particularity that is static, and the multipath can be known a priori. Within this context, we propose in this paper a simple yet very efficient modulation technique, based on Impulse Radio-On–Off-Keying (IR-OOK), which significantly optimizes the performance in Wireless Network-on-Chip (WNoC) as well as off-chip scenarios. This technique is based on interspersing information pulses among the reflected pulses in order to reduce the time between pulses, thus increasing the data rate. We prove that the final data rate can be considerably increased without increasing the hardware complexity of the transceiver.Peer ReviewedPostprint (published version

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Medium access control in wireless network-on-chip: a context analysis

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless on-chip communication is a promising candidate to address the performance and efficiency issues that arise when scaling current NoC techniques to manycore processors. A WNoC can serve global and broadcast traffic with ultra-low latency even in thousand-core chips, thus acting as a natural complement to conventional and throughput-oriented wireline NoCs. However, the development of MAC strategies needed to efficiently share the wireless medium among the increasing number of cores remains a considerable challenge given the singularities of the environment and the novelty of the research area. In this position article, we present a context analysis describing the physical constraints, performance objectives, and traffic characteristics of the on-chip communication paradigm. We summarize the main differences with respect to traditional wireless scenarios, and then discuss their implications on the design of MAC protocols for manycore WNoC, with the ultimate goal of kickstarting this arguably unexplored research area.Peer ReviewedPostprint (author's final draft

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN

    Get PDF
    Network modeling is a critical component for building self-driving Software-Defined Networks, particularly to find optimal routing schemes that meet the goals set by administrators. However, existing modeling techniques do not meet the requirements to provide accurate estimations of relevant performance metrics such as delay and jitter. In this paper we propose a novel Graph Neural Network (GNN) model able to understand the complex relationship between topology, routing and input traffic to produce accurate estimates of the per-source/destination pair mean delay and jitter. GNN are tailored to learn and model information structured as graphs and as a result, our model is able to generalize over arbitrary topologies, routing schemes and variable traffic intensity. In the paper we show that our model provides accurate estimates of delay and jitter (worst case R2 = 0.86) when testing against topologies, routing and traffic not seen during training. In addition, we present the potential of the model for network operation by presenting several use-cases that show its effective use in per-source/destination pair delay/jitter routing optimization and its generalization capabilities by reasoning in topologies and routing schemes not seen during training.This work was supported by AGH University of Science and Technology grant, under contract no. 15.11.230.400, the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE) and the Catalan Institution for Research and Advanced Studies (ICREA). The research was also supported in part by PL-Grid Infrastructure.Peer ReviewedPostprint (author's final draft

    Feature engineering for deep reinforcement learning based routing

    Get PDF
    Recent advances in Deep Reinforcement Learning (DRL) techniques are providing a dramatic improvement in decision-making and automated control problems. As a result, we are witnessing a growing number of research works that are proposing ways of applying DRL techniques to network-related problems such as routing. However, such proposals failed to achieve good results, often under-performing traditional routing techniques. We argue that successfully applying DRL-based techniques to networking requires finding good representations of the network parameters: feature engineering. DRL agents need to represent both the state (e.g., link utilization) and the action space (e.g., changes to the routing policy). In this paper, we show that existing approaches use straightforward representations that lead to poor performance. We propose a novel representation of the state and action that outperforms existing ones and that is flexible enough to be applied to many networking use-cases. We test our representation in two different scenarios: (i) routing in optical transport networks and (ii) QoS-aware routing in IP networks. Our results show that the DRL agent achieves significantly better performance compared to existing state/action representations.This work has been supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE) and the Catalan Institution for Research and Advanced Studies (ICREA).Peer ReviewedPostprint (author's final draft

    Knowledge-defined networking

    Get PDF
    The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Peer ReviewedPostprint (author's final draft

    Capacity and delay of bacteria-based communication in nanonetworks

    No full text
    Analysis of the capacity and the delay of a bacteria-based communication system in the nano-scaleProjecte realitzat mitjançant programa de mobilitat. SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING. GEORGIA INSTITUTE OF TECHNOLOGYEnglish: the objective is to perform a theoretical analysis of the capacity and the delay on flagellated bacteria communication.Castellano: el objetivo es hacer un análisis de la capacidad y del retraso de las comunicaciones basadas en bacterias flageladas.Català: l'objectiu és dur a terme una anàlisi de la capacitat i del retard de les comunicacions basades en bacteris flagel·lats
    corecore