106 research outputs found

    Crystal Imperfections of Industrial Vanadium Phosphorous Oxide Catalysts

    Get PDF
    This study presents information about crystal imperfections in the main phase of industrial vanadium phosphorous oxide catalysts that are used to catalyze the oxidation of n-butane to maleic anhydride, being an important intermediate in the chemical industry. The mechanism of this reaction is still debated, and the catalytically active and selective surface centers have not yet been identified. The results presented are based on X-ray diffraction data obtained by both laboratory-scale and synchrotron powder diffraction experiments, as well as laboratory-scale single-crystal diffraction experiments. It has been proven that pronounced Bragg reflection broadening effects found in laboratory-scale powder diffraction patterns of industrial VPO catalysts are real and not due to an insufficient 2-θ resolution of the apparatus. In the framework of this work, a powder diffraction full profile fitting strategy was developed using the TOPAS software, which was applied to analyze the X-ray diffraction data of four differently activated industrial catalyst samples, originating from one batch after they had been catalytically tested. It was found that the reflection broadening is mainly caused by an anisotropic crystal size, which results in platelet-shaped crystallites of vanadyl pyrophosphate. A further contribution to the reflex broadening, especially for (111), was found to be a result of stacking faults perpendicular to the a direction in the crystal structure of vanadyl pyrophosphate. These results were used to elaborate on possible correlations between structural proxies and catalytic performance. A direct correlation between the extension of coherently scattering domains in the z direction and the catalyst�s selectivity could be proven, whereas the activity turned out to be dependent on the crystallite shape. Regarding the phase contents, it could be shown that sample catalysts containing a higher amount of β-VO(PO3)2 showed increased catalytic activity

    Destructive Adsorption of Carbon Tetrachloride on Alkaline Earth Metal Oxides

    Get PDF
    The destructive adsorption of CCl4 on MgO, CaO, SrO, and BaO has been studied as a function of the reaction temperature and the amount of CCl4 injected. The reaction was followed using in situ Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and 13 C magic angle spinning nuclear magnetic resonance spectroscopy. It was found that the activity toward CCl4 parallels the basicity of the alkaline earth metal oxide; i.e., the activity decreased in the order BaO > SrO > CaO > MgO. Barium oxide readily reacted with CCl4 at 200-300 °C, and, at these low temperatures, CO2 was the only gas-phase product that evolved from the surface. At higher reaction temperatures, other alkaline earth metal oxides, such as CaO and MgO, also became active, and COCl2 was found to be a reaction intermediate in the destruction of CCl4. Although the destruction process is initiated at the surface, the continuous O 2- /Cl - exchange results in the bulk transformation of the metal oxide to the metal chloride. Barium oxide could be regenerated by dissolving the chloride in water, followed by precipitation as barium carbonate and subsequent calcination. In addition, carbon tetrachloride destruction at around 600 °C resulted in the formation of an unusual alkaline earth metal oxide chloride, viz., M4OCl6 (M ) Ba, Sr, or Ca)

    Phosphorus dosing during catalytic n‑butane oxidation in a μ-reactor: a proof of concept

    Get PDF
    The selective oxidation of n-butane to maleic anhydride over vanadium–phosphorus oxide catalysts is subject to a dynamic change in the catalyst activity. This phenomenon is called phosphorus dynamics and plays a vital role in the prediction of catalytic reaction rates, but to date, no models measured under transport limitation free conditions have been published. This study presents the first investigation of the phosphorus dynamics over extended periods of time (multiple days on stream) under transport limitation free conditions in a μ-fixed-bed reactor. Initially, temperature variation experiments are conducted to investigate whether phosphorus dynamics takes place in a μ-reactor and to determine the onset of phosphorus loss. Then, a setup for dosing of liquid organophosphorous species on the scale of nL min–1 is proposed, and functionality is demonstrated via step test experiments. Results of the temperature variation showed that phosphorus loss occurs in the μ-reactor but starts at temperatures exceeding those of industrial scale reactors by 30–80 K. It was further observed that addition of steam to the feed increases the intensity of the phosphorus dynamics and lowers the onset temperature. Step test results demonstrated the functionality of the dosing setup if a suitable inert material is chosen and the metal surfaces downstream the dosing are treated according to a passivation procedure proposed in this study. The addition of steam appears to be required for appropriate distribution of the dosed organophosphorous species over the catalyst bed

    Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation

    Get PDF
    Ethane oxidative dehydrogenation (ODH) is an alternative route for ethene production. Crystalline M1 phase of Mo-V mixed metal oxide is an excellent catalyst for this reaction. Here we show a hydrothermal synthesis method that generates M1 phases with high surface areas starting from poorly soluble metal oxides. Use of organic additives allows control of the concentration of metals in aqueous suspension. Reactions leading to crystalline M1 take place at 190 °C, i.e., approximately 400 °C lower than under current synthesis conditions. The evolution of solvated polyoxometalate ions and crystalline phases in the solid is monitored by spectroscopies. Catalysts prepared by this route show higher ODH activity compared to conventionally prepared catalysts. The higher activity is due not only to the high specific surface area but also to the corrugated lateral termination of the M1 crystals, as seen by atomic resolution electron microscopy, exposing a high concentration of catalytically active sites

    In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts

    No full text
    In situ Raman spectroscopy was used to characterize the synthesis and activation steps of mixed metal oxide catalysts starting from the mixed solutions, through subsequent drying and activation procedures, to the catalytic propene partial oxidation reaction. Comparison with Raman spectra recorded for defined, well-crystallized reference oxides allowed the assignment of the spectra obtained during the catalyst preparation to certain oxides, such as Mo5O14. Especially the latter oxide phase is relevant for selective partial oxidation catalysis. The selectivity for partial oxidation products could be improved between two- and three-fold when the amount Of Mo5O14-type oxide increased. This phase forms from mixtures of molybdenum and tungsten and from mixtures of molybdenum, tungsten and vanadium, but not from binary mixtures of molybdenum and vanadium with high vanadium concentrations. Tungsten and vanadium play an important role as structural promoters in the formation and stabilization of this oxide and for high catalytic activity. A resonance Raman effect was proved for reduced molybdenum oxides due to resonant coupling of the exciting laser to the IVCT transitions between fivefold- coordinated Mo5+ and sixfold-coordinated Mo6+. This resonance enhancement renders possible the in situ characterization of operating, reduced molybdenum oxide catalysts. In contrast to the Mo5O14-type phase, MoO3-x, exhibits a high selectivity to total oxidation, and it even becomes re-oxidized during propene partial oxidation. These different catalytic properties Of MoO3-x, and the Mo5O14-type oxide led to the development of a structure-activity relationship which explains the behavior of industrial catalysts. A model is proposed on the basis of a bond order-Raman wavenumber relationship, which explains the different selectivities of these two oxides in terms of metal- oxygen bond strengths, i.e. oxygen basicity and oxygen lability, respectively. Copyright (C) 2002 John Wiley Sons, Ltd

    Raman Spectroscopy

    No full text

    In situ Raman spectroscopy - a valuable tool to understand operating catalysts

    No full text
    Laser Raman spectroscopy (LRS) is one of the most powerful tools for the in situ study of catalytic materials and surfaces under working conditions. Raman characterizations can be carried out at temperatures as high as 1000 K and in controlled atmospheres. Modern high light-throughput spectrometers permit the recording of the whole spectral range from 100 to 4000 cm-1 at once and time resolutions in the sub-second regime for materials with high Raman cross sections. Transient temperature or pressure response studies, e.g. pulse experiments with isotope labels, are thus possible, and kinetic and spectroscopic characteristics can be related. Modern quartz fiber optics render possible easy spectroscopic access to catalytic reactors of defined and well characterized operation conditions. Quantitative relation of real catalytic steady state operation, e.g. catalytic activity and selectivity, to changes in the catalyst structure is thus made possible. Several in situ LRS studies are discussed including the characterization of supported and unsupported Mo-based catalysts, confocal Raman microspectroscopy of mixed MoVW oxide catalysts, oxygen exchange in Sb2O3/MoO3 oxide physical mixtures elucidating the catalytic synergy effects, and active surface intermediates during oxidative coupling of methane, and NO and N2O decomposition over Ba/MgO catalysts related to the catalytic reaction via transient pressure step experiments

    Laser Raman spectroscopy - A powerful tool for in situ studies of catalytic materials

    No full text
    Advantages and limitations of laser Raman spectroscopy (LRS) as an in situ vibrational spectroscopy for the study of catalytic materials and surfaces under working conditions are discussed. Measurements can be carried out at temperatures as high as 1200 K in controlled atmospheres. Modern instrumentation permits time resolutions in the sub-second regime for materials with high Raman cross sections. Transient studies are thus possible. Several examples are presented of in situ LRS studies including the phase analysis of bismuth molybdate and VPO oxidation catalysts, synergy effects and oxygen exchange in Sb2O3/MoO3 oxide mixtures, intermediates in oxidative coupling of methane, NO decomposition on Ba/MgO catalysts, and transient SERS studies of partial oxidation of methanol on Ag single crystal surfaces and of the reduction of oxide overlayers on electrodeposited Rh layers

    Millistructured reactor as tool for investigating the kinetics of maleic anhydride synthesis

    Get PDF
    A nearly isothermal millistructured fixed-bed reactor was used to investigate the kinetics of the selective oxidation of n-butane to maleic anhydride. In addition to the investigation of a broad range of industrially relevant conditions, the focus was on the influence of the reaction products on the kinetics. For this purpose, a saturator for the accurate dosing of the target product MA was developed. The experimental data were used to derive a reaction network comprising the by-products acetic and acrylic acid. Additionally, the inhibition of the associated reactions by reactants and products was investigated
    • …
    corecore