7 research outputs found

    Los liberales sin hoja de parra

    Get PDF

    Immunogenic Profiling in Mice of a HIV/AIDS Vaccine Candidate (MVA-B) Expressing Four HIV-1 Antigens and Potentiation by Specific Gene Deletions

    Get PDF
    BACKGROUND: The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1beta, respectively (referred as MVA-B DeltaA41L/DeltaB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B DeltaA41L/DeltaB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4(+) and CD8(+) T cells, with the CD8(+) T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B DeltaA41L/DeltaB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+) and CD8(+) T-cell immune responses. HIV-1-specific CD4(+) T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8(+) T-cell responses, MVA-B DeltaA41L/DeltaB16R induced more GPN-specific CD8(+) T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. CONCLUSIONS/SIGNIFICANCE: These findings revealed that MVA-B and MVA-B DeltaA41L/DeltaB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines

    Technical advance: Soluble OX40 molecule mimics regulatory T cell modulatory activity on FCεRI-dependent mast cell degranulation

    No full text
    Tregs play a central role in modulating FcεRI-dependent MC effector functions in the course of the allergic response. Cellular interaction depends on the constitutive expression of OX40 on Tregs and the OX40L counterpart on MCs. Study of OX40L signaling on MCs is hampered by the need of a highly purified molecule, which triggers OX40L specifically. We now report that sOX40 mimics the physiological activity of Treg interaction by binding to activated MCs. When treated with sOX40, activated MCs showed decreased degranulation and Ca(++) influx, whereas PLC-γ2 phosphorylation remained unaffected. Once injected into experimental animals, sOX40 not only located within the endothelium but also in parenchyma, where it could be found in close proximity and apparently bound to MCs. This soluble molecule triggers MC-OX40L without the requirement of Tregs, thus allowing study of OX40L signaling pathways in MCs and in other OX40L-expressing cell populations. Importantly, as sOX40 inhibits MC degranulation, it may provide an in vivo therapeutic tool in allergic disease

    International Society for Therapeutic Ultrasound Conference 2016

    No full text
    corecore