546 research outputs found

    The global atmospheric energy transport analysed by a wavelength-based scale separation

    Get PDF
    The atmosphere transports energy polewards by circulation cells and eddies. To the present day, there has been a knowledge gap regarding the preferred spatial scales and physical mechanisms of eddy energy transport. To fill the gap, we separate the meridional atmospheric energy transport in the ERA5 reanalysis by spatial scales and into quasi-stationary and transient flow patterns and latent and dry components. Baroclinic instability is the major instability mechanism in the transient synoptic scales and is responsible for forming cyclones, anticyclones, and small-scale Rossby waves. At the planetary scales, circulation patterns are often induced by other mechanisms such as flow interaction with orography and land–sea heating contrasts. However, a separation between circulation patterns at the synoptic and planetary scales has yet to be established. We find that both baroclinically induced and transient energy transport is predominantly associated with eddies at wavelengths between 2000 and 8000 km. The maxima in both types of transport occur at wavelengths around 5000 km, in good agreement with linear baroclinic theory. Since these results are independent of latitude, we adapt the scale separation of the energy transport to be based on the wavelength instead of the previously used wavenumber. We define the synoptic transport by the wavelength band between 2000 and 8000 km. We analyse the annual and seasonal mean in the energy transport components and their inter-annual variability. The scale-separated transport components are fairly similar in both hemispheres. Transport by synoptic waves is the largest contributor to extra-tropical energy and moisture transport, mainly of a transient character, and is influenced little by seasonality. In contrast, transport by planetary waves depends highly on the season and has two distinct characteristics. (1) In the extra-tropical winter, planetary waves are important due to a large transport of dry energy. This planetary transport features the largest inter-annual variability of all components and is mainly quasi-stationary in the Northern Hemisphere but transient in its southern counterpart. (2) In the sub-tropical summer, quasi-stationary planetary waves are the most important transport component, mainly due to moisture transport, presumably associated with monsoons. In contrast to transport by planetary and synoptic waves, only a negligible amount of energy is transported by mesoscale eddies (&lt; 2000 km).</p

    A nonparametric approach for model individualization in an artificial pancreas

    Get PDF
    The identification of patient-tailored linear time invariant glucose-insulin models is investigated for type 1 diabetic patients, that are characterized by a substantial inter-subject variability. The individualized linear models are identified by considering a novel kernel-based nonparametric approach and are compared with a linear time invariant average model in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean squared error. Model identification and validation are based on in-silico data collected from the adult virtual population of the UVA/Padova simulator. The data generation involves a protocol designed to produce a sufficient input excitation without compromising patient safety, compatible also with real life scenarios. The identified models are exploited to synthesize an individualized Model Predictive Controller (MPC) for each patient, which is used in an Artificial Pancreas to maintain the blood glucose concentration within an euglycemic range. The MPC used in several clinical studies, synthesized on the basis of a non-individualized average linear time invariant model, is also considered as reference. The closed-loop control performance is evaluated in an in-silico study on the adult virtual population of the UVA/Padova simulator in a perturbed scenario, in which the MPC is blind to random variations of insulin sensitivity in each virtual patient. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    On the spatial and temporal variability of atmospheric heat transport in a hierarchy of models

    Get PDF
    This is the final version of the article. Available from American Meteorological Society via the DOI in this record.The aquaplanet and heton model data are available upon request to the authors. The wavelet analysis was performed using code from C. Torrence and G. Compo, available at http://atoc.colorado.edu/research/wavelets/.The present study analyzes the spatial and temporal variability of zonally integrated meridional atmospheric heat transport due to transient eddies in a hierarchy of datasets. These include a highly idealized two-layer model seeded with point geostrophic vortices, an intermediate complexity GCM, and the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data. The domain of interest is the extratropics. Both the two-layer model and the GCM display a pronounced temporal variability in the zonally integrated meridional transport, with the largest values (or pulses) of zonally integrated transport being associated with extended regions of anomalously strong local heat transport. In the two-layer model these large-scale coherent transport regions, termed "heat transport bands," are linked to densely packed baroclinic vortex pairs and can be diagnosed as low-wavenumber streamfunction anomalies. In the GCM they are associated with both the warm and cold sectors of midlatitude weather systems. Both these features are also found in ERA-Interim: the heat transport bands match weather systems and occur primarily in the storm-track regions, which in turn correspond to planetary-scale climatological streamfunction anomalies. The authors hypothesize that the temporal variability of the zonally integrated heat transport is partly linked to oscillatory variations in the storm-track activity but also contains a background red noise component. The existence of a pronounced variability in the zonally integrated meridional heat transport can have important consequences for the interplay between midlatitude dynamics and the energy balance of the high latitudes.During this research, G. Messori has been funded by the U.K.’s Natural Environment Research Council (RAPID–RAPIT project), Sweden’s VetenskapsrĂ„det (MILEX project; Grant 2012-40395-98427-17), and the Department of Meteorology of Stockholm Universit

    Sovereign debt crisis, fiscal consolidation, and active central bankers in a monetary union

    Get PDF
    In this paper we examine global financial instability and its impact on the sovereign debts of peripheral countries in a stylized model of the European Economic and Monetary Union (EMU), where centralized and national policy authorities strategically interact. We show that active expansionary monetary policies might operate as indirect risk-sharing mechanisms that improve EMU stability and the welfare of (a part of the) member states. The European Central Bank (ECB) partially internalizes the fact that the monetary union\u2019s stability is a public good by reallocating a part of the cost of stabilizing the EMU from the periphery to the core countries. In this respect, unconventional monetary policies such as \u2018quantitative easing\u2019 are more effective than traditional monetary policies centered on ex-post interest rate adjustments. The rationale of our findings is that unconventional monetary policies decrease the cost of fiscal interventions in the peripheral countries and incentivize the consolidation of their public balance sheets; these same unconventional policies produce positive externalities but also come at a cost for central countries

    Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates

    Get PDF
    In recent years, biopolymers have been attracting the attention of researchers and special-ists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the inno-vations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commer-cial applications in the near future

    Modulation of Mid‐Holocene African Rainfall by Dust Aerosol Direct and Indirect Effects

    Full text link
    Climate model simulations of the mid‐Holocene (MH) consistently underestimate northern African rainfall for reasons not fully understood. While most models incorporate orbital forcing and vegetation feedbacks, they neglect dust reductions associated with greater vegetation cover. Here we simulate the MH climate response to reduced Saharan dust using CESM CAM5‐chem, which resolves direct and indirect dust aerosol effects. Direct aerosol effects increase Saharan and Sahel convective rainfall by ~16% and 8%. In contrast, indirect aerosol effects decrease stratiform rainfall, damping the dust‐induced total rainfall increase by ~13% in the Sahara and ~59% in the Sahel. Sensitivity experiments indicate the dust‐induced precipitation anomaly in the Sahara and Sahel (0.27 and 0.18 mm/day) is smaller than the anomaly from MH vegetation cover (1.19 and 1.08 mm/day). Although sensitive to dust radiative properties, sea surface temperatures, and indirect aerosol effect parameterization, our results suggest that dust reductions had competing effects on MH African rainfall.Plain Language SummarySix thousand years ago, changes in Earth’s orbit led to greater summer season solar radiation over northern Africa. The increase in energy resulted in higher rainfall amounts, widespread vegetation, and reduced dust aerosols over regions that today are desert. In this study we use a climate model, CESM CAM5‐chem, that accounts for the ways dust aerosols interact with sunlight and cloud droplets to examine how the reduction in Saharan dust during this past humid time affected rainfall. When dust aerosols are reduced in the model, more sunlight reaches the surface, the Sahara warms, and convective rainfall from the West African Monsoon increases. However, through dust‐cloud droplet interactions, the same reduction in dust decreases nonconvective rainfall, which is less prevalent during the monsoon season but still important, and thus dampens the total rainfall increase. Overall, dust reduction leads to a rainfall response that is dependent on rainfall type. Lastly, we compare the rainfall response of reducing dust to that of increasing vegetation cover and find that while important, the response from dust is considerably weaker.Key PointsChanges in direct dust aerosol effects from reduced mid‐Holocene Saharan dust loading increase convective rainfall in northern AfricaChanges in indirect dust aerosol effects weaken total precipitation increases by limiting stratiform rainfall, particularly in the SahelThe African rainfall response to total dust aerosol effects is lower than a previous study and substantially less than vegetation forcingPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149324/1/grl58759-sup-0001-2018GL081225-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149324/2/grl58759_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149324/3/grl58759.pd

    A new view of heat wave dynamics and predictability over the eastern Mediterranean

    Get PDF
    Skillful forecasts of extreme weather events have a major socioeconomic relevance. Here, we compare two complementary approaches to diagnose the predictability of extreme weather: recent developments in dynamical systems theory and numerical ensemble weather forecasts. The former allows us to define atmospheric configurations in terms of their persistence and local dimension, which provides information on how the atmosphere evolves to and from a given state of interest. These metrics may be used as proxies for the intrinsic predictability of the atmosphere, which only depends on the atmosphere\u27s properties. Ensemble weather forecasts provide information on the practical predictability of the atmosphere, which partly depends on the performance of the numerical model used. We focus on heat waves affecting the eastern Mediterranean. These are identified using the climatic stress index (CSI), which was explicitly developed for the summer weather conditions in this region and differentiates between heat waves (upper decile) and cool days (lower decile). Significant differences are found between the two groups from both the dynamical systems and the numerical weather prediction perspectives. Specifically, heat waves show relatively stable flow characteristics (high intrinsic predictability) but comparatively low practical predictability (large model spread and error). For 500 hPa geopotential height fields, the intrinsic predictability of heat waves is lowest at the event\u27s onset and decay. We relate these results to the physical processes governing eastern Mediterranean summer heat waves: adiabatic descent of the air parcels over the region and the geographical origin of the air parcels over land prior to the onset of a heat wave. A detailed analysis of the mid-August 2010 record-breaking heat wave provides further insights into the range of different regional atmospheric configurations conducive to heat waves. We conclude that the dynamical systems approach can be a useful complement to conventional numerical forecasts for understanding the dynamics and predictability of eastern Mediterranean heat waves

    Reversible Stress-Driven and Stress-Free Two-Way Shape Memory Effect in a Sol-Gel Crosslinked Polycaprolactone

    Get PDF
    The two-way shape memory effect is the ability of a material to change its shape between two configurations upon application and removal of a stimulus, and, among shape memory polymers, it is featured only by few systems, such as semicrystalline networks. When studied under tensile conditions, it consists of elongation-contraction cycles along cooling and heating across the crystallization and melting region, typically under the application of a constant load. However, recent studies on crosslinked semicrystalline co-polymers demonstrate that also a completely stress-free, or self-sustained, two-way effect may be achieved through specific thermomechanical cycles. This effect is currently regarded with interest for the development of intrinsically reversible sensors and actuators, and it may also be displayed by simpler materials, as homopolymer-based semicrystalline networks. Only seldom articles investigate this possibility, therefore in this work the two-way shape memory behavior is studied on a poly(e-caprolactone) system, crosslinked by means of a sol-gel approach. The effect is studied both under stress-driven and stress-free condition, by applying properly set-up thermo-mechanical histories. The results allow to describe the effect as a function of temperature, to reveal the dependence on specific testing parameters and to compare the extent of the reversible strain variation under these two conditions

    Dynamics and predictability of cold spells over the Eastern Mediterranean

    Get PDF
    The accurate prediction of extreme weather events is an important and challenging task, and has typically relied on numerical simulations of the atmosphere. Here, we combine insights from numerical forecasts with recent developments in dynamical systems theory, which describe atmospheric states in terms of their persistence (ξ−1^{-1}) and local dimension (d), and inform on how the atmosphere evolves to and from a given state of interest. These metrics are intuitively linked to the intrinsic predictability of the atmosphere: a highly persistent, low-dimensional state will be more predictable than a low-persistence, high-dimensional one. We argue that ξ−1^{-1} and d, derived from reanalysis sea level pressure (SLP) and geopotential height (Z500) fields, can provide complementary predictive information for mid-latitude extreme weather events. Specifically, signatures of regional extreme weather events might be reflected in the dynamical systems metrics, even when the actual extreme is not well-simulated in numerical forecasting systems. We focus on cold spells in the Eastern Mediterranean, and particularly those associated with snow cover in Jerusalem. These rare events are systematically associated with Cyprus Lows, which are the dominant rain-bearing weather system in the region. In our analysis, we compare the ‘cold spell Cyprus Lows’ to other ‘regular’ Cyprus Low days. Significant differences are found between cold spells and ‘regular’ Cyprus Lows from a dynamical systems perspective. When considering SLP, the intrinsic predictability of cold spells is lowest hours before the onset of snow. We find that the cyclone’s location, depth and magnitude of air-sea fluxes play an important role in determining its intrinsic predictability. The dynamical systems metrics computed on Z500 display a different temporal evolution to their SLP counterparts, highlighting the different characteristics of the atmospheric flow at the different levels. We conclude that the dynamical systems approach, although sometimes challenging to interpret, can complement conventional numerical forecasts and forecast skill measures, such as model spread and absolute error. This methodology outlines an important avenue for future research, which can potentially be fruitfully applied to other regions and other types of weather extremes

    Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/ Poly(epsilon-caprolactone) Semicrystalline Networks

    Get PDF
    In this work, poly(ethylene glycol) (PEG)/poly(epsilon- caprolactone) (PCL) semicrystalline networks were prepared by photo-cross-linking of methacrylated macromonomers with different molecular weights and in different proportions to obtain amphiphilic materials capable of displaying properly designed shape memory effects. Networks based on PCL 10 kDa and PEG 3 kDa showed suitable thermal and mechanical properties with well-separated crystallization and melting regions to achieve a self-standing two-way shape memory effect. Particularly, after the application of a specific thermomechanical history, these materials are capable of cyclically changing their shape between two configurations upon cooling-heating cycles in the absence of any external load applied. The effect of the composition of the networks and of the employed thermomechanical parameters, such as the applied strain and the actuation temperature, was investigated to shed light on the shape memory mechanism for this class of materials, which are considered promising for applications in the biomedical field and as reversible actuators for soft robotics
    • 

    corecore