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Abstract
The accurate prediction of extreme weather events is an important and challenging task, and has typically relied on numerical 
simulations of the atmosphere. Here, we combine insights from numerical forecasts with recent developments in dynamical 
systems theory, which describe atmospheric states in terms of their persistence (θ−1) and local dimension (d), and inform on 
how the atmosphere evolves to and from a given state of interest. These metrics are intuitively linked to the intrinsic predict-
ability of the atmosphere: a highly persistent, low-dimensional state will be more predictable than a low-persistence, high-
dimensional one. We argue that θ−1 and d, derived from reanalysis sea level pressure (SLP) and geopotential height (Z500) 
fields, can provide complementary predictive information for mid-latitude extreme weather events. Specifically, signatures 
of regional extreme weather events might be reflected in the dynamical systems metrics, even when the actual extreme is 
not well-simulated in numerical forecasting systems. We focus on cold spells in the Eastern Mediterranean, and particularly 
those associated with snow cover in Jerusalem. These rare events are systematically associated with Cyprus Lows, which 
are the dominant rain-bearing weather system in the region. In our analysis, we compare the ‘cold spell Cyprus Lows’ to 
other ‘regular’ Cyprus Low days. Significant differences are found between cold spells and ‘regular’ Cyprus Lows from a 
dynamical systems perspective. When considering SLP, the intrinsic predictability of cold spells is lowest hours before the 
onset of snow. We find that the cyclone’s location, depth and magnitude of air-sea fluxes play an important role in determin-
ing its intrinsic predictability. The dynamical systems metrics computed on Z500 display a different temporal evolution to 
their SLP counterparts, highlighting the different characteristics of the atmospheric flow at the different levels. We conclude 
that the dynamical systems approach, although sometimes challenging to interpret, can complement conventional numeri-
cal forecasts and forecast skill measures, such as model spread and absolute error. This methodology outlines an important 
avenue for future research, which can potentially be fruitfully applied to other regions and other types of weather extremes.

Keywords Dynamical systems · Chaos · Extreme weather · Extreme temperatures · Prediction · Atmospheric dynamics · 
Weather forecasting · Numerical weather prediction

1 Introduction

Cold spells are a major weather-related hazard, causing pre-
mature excess mortality (Peterson et al. 2013; Ballester et al. 
2016; Ryti et al. 2016), agricultural losses (e.g., Ferrarezi 
et al. 2019) and ecosystem damage (Boucek et al. 2016). 
The Eastern Mediterranean has been identified as a climate 
change hot-spot (Giorgi 2006; Barcikowska et al. 2020) and, 
although it is typically associated with warm weather and 
heat waves, has experienced damaging cold spells in recent 
decades. Moreover, the frequency of colds spells may not 
decrease as fast as may be naively expected under global 
warming, since variability may also increase (Kodra et al. 
2011; Gao et al. 2015).
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The Eastern Mediterranean climate conditions are char-
acterized by moderate air temperatures during the winter 
season and dry and stable hot weather conditions during 
summer (Goldreich et al. 2003). The winter season is char-
acterized by the passage of extra-tropical cyclones, named 
Cyprus Lows, that tend to develop or deepen over the Levant 
when upper level troughs reach the region (e.g., Alpert and 
Reisin 1986; Alpert et al. 1990a; Shay-El and Alpert 1991; 
Trigo 1999; Flocas et al. 2010; Ziv et al. 2015). These low-
pressure systems typically persist for 1–4 days (Alpert and 
Ziv 1989). On rare occasions, Cyprus Lows drive severe 
cold spells associated with snowfall over the higher parts 
of the Levant, including Jerusalem. The weather forecast-
ers in the region have long considered these cold spells as 
challenging to predict (Wolfson and Adar 1975; Bitan and 
Ben-Rubi 1978; Goldreich 2003).

A notable episode in this respect was the severe cold spell 
named ‘Alexa’ (11–14 December 2013), which lead to wide-
spread snowfall and mayhem in the region. The damage was 
estimated at ~ 100 million US dollars, making it the region’s 
costliest natural disaster ever recorded (https ://ims.gov.il/he/
Clima teRep orts). Part of the disruption can be reasonably 
ascribed to the poor short-term forecasts of the event, which 
severely underestimated the associated precipitation, wind 
intensity and snow depth (Hochman et al. 2019). The ability 
to predict this type of events, and more generally weather 
events lying in the tails of the respective distributions, is 
therefore of crucial importance.

The practical ability to predict specific atmospheric 
configurations is strongly dependent on the details of the 
numerical model being used, which presumably reflects 
our broader understanding of the dynamic and thermody-
namic processes in the atmosphere, and the accuracy of 
initial conditions (Lorentz 1963; Slingo and Palmer 2011). 
A widely-adopted approach for diagnosing the a priori 
practical predictability of the atmosphere is the spread of 
ensemble weather forecasts (e.g., Buizza 1997; Hoheneg-
ger et al. 2006; Ferranti et al. 2015). However, one may also 
consider the intrinsic predictability, which only depends on 
the properties of the atmosphere itself and of the considered 
atmospheric configuration. Recent developments in dynami-
cal systems theory allow to describe instantaneous configu-
rations in terms of the local dimension (d)—which informs 
on how the atmosphere evolves to and from the state of inter-
est—and persistence in phase space (θ−1)—which can be 
understood as persistence in time (Lucarini et al. 2016; Far-
anda et al. 2017a). These metrics are intuitively linked to the 
intrinsic predictability of the atmosphere: a highly persistent 
(low θ), low-dimensional (low d) state will be more predict-
able than a low-persistence (high θ), high-dimensional (high 
d) one (Messori et al. 2017). Different interpretations of pre-
dictability depend on different factors or may emphasize dif-
ferent aspects of the atmospheric circulation, and thus show 

discrepancies in direct comparisons (Messori et al. 2018). 
Indeed, while the notions of practical and intrinsic predict-
ability are linked, there is not always a direct correspondence 
between the two (Scher and Messori 2019).

The dynamical systems approach has been successfully 
applied to a variety of climate fields and datasets (Far-
anda et al. 2017a, b, 2019a,2020, b, c; Messori et al. 2017; 
Buschow and Friedrichs 2018; Rodrigues et al. 2018; Bru-
netti et al. 2019; Hochman et al. 2019, 2020; De Luca et al. 
2020a, b; Pons et al. 2020). Specifically, it has been shown 
that d and θ−1 can provide an objective dynamical charac-
terization of synoptic systems over both the North Atlantic 
(Faranda et al. 2017a; Messori et al. 2017; Rodrigues et al. 
2018) and the Eastern Mediterranean (Hochman et al. 2019, 
2020). Hochman et al. (2019) have provided evidence that 
the synoptic-scale surface atmospheric pattern associated 
with the ‘Alexa’ cold spell was relatively persistent (low 
θ), yet with a high local dimension (high d). This is a rare 
combination, since there is typically a positive correlation 
between d and θ (e.g., Rodrigues et al. 2018).

The above studies have mostly focussed on snapshots 
of atmospheric configurations. Here, we systematically 
evaluate the potential of the dynamical systems approach 
to describe the temporal evolution of weather extremes and 
complement conventional numerical forecasts. Specifically, 
we hypothesize that the signature of extreme weather events 
may be reflected in the evolution of the dynamical systems 
metrics, even when numerical forecasting systems provide 
a poor representation of the extreme itself. In this respect, 
cold spells associated with snow in Jerusalem (‘cold spells’ 
hereafter) are used as a case study, and are compared to 
Cyprus Lows not leading to snow.

The paper is organized as follows: Sect. 2 describes the 
data and methods used, including a brief description of the 
dynamical systems analysis, the methods for evaluating 
the forecast spread/skill of an event and an air parcel back-
ward trajectory tracking methodology. Section 3 presents a 
seasonal evaluation of the dynamical systems metrics, the 
dynamics of cold spells with respect to ‘regular’ Cyprus 
Lows and a detailed dynamical analysis of the ‘Alexa’ storm. 
Section 4 summarizes and concludes the study.

2  Data and methods

2.1  Data

We identify cold spells using a complete list of events with 
snowfall in Jerusalem, provided by the Israeli Meteorologi-
cal Service for the period 1948–2015. The synoptic classifi-
cation used to identify Cyprus Low days (Sect. 2.2) and the 
dynamical systems analysis (Sect. 2.3 and Appendix 1) are 
based on the National Centre for Environmental Prediction/

https://ims.gov.il/he/ClimateReports
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National Centre for Atmospheric Research (NCEP/NCAR) 
Reanalysis Project daily and 6-hourly data for 1948–2015 
on a 2.5° × 2.5° horizontal grid (Kalnay et al. 1996). This 
spatial resolution is adequate for the analysis. Indeed, Far-
anda et al. (2017a) have shown that the general conclusions, 
which can be drawn from a dynamical systems analysis, are 
largely insensitive to the dataset’s horizontal resolution, as 
long as the major spatial structures characterizing the field 
of interest are resolved. However, the air parcel tracking 
(Sect. 2.4) requires data on a reasonably high horizontal 
and vertical resolution to be accurate, and is thus applied 
to 6-hourly European Centre for Medium Range Weather 
Forecasting (ECMWF) ERA-Interim data for 1979–2015, 
on a regular 1° × 1° horizontal grid and 60 vertical levels 
(Dee et al. 2011).

The numerical forecasts are taken from the Global 
Ensemble Forecast System (GEFS) reforecast v.2 dataset 
produced by NCEP/NCAR (Hamill et al. 2013). Operational 
Numerical Weather Prediction (NWP) models are updated 
regularly, e.g., roughly every 6 months in the case of the 
ECMWF model. Therefore, operational forecast archives 
are typically inhomogeneous, and cannot easily be used for 
studies over long periods. So-called reforecasts, occasion-
ally termed hindcasts, are a way to circumvent this problem. 
These datasets consist of a homogenous set of past forecasts 
using a single NWP model. The dataset used here provides a 
homogeneous set of daily ensemble reforecasts from Decem-
ber 1984 to present. Each reforecast consists of a control 
forecast and a ten-member ensemble on a 0.5° × 0.5° hori-
zontal grid.

To evaluate the forecasts, we leverage a first-of-its-kind 
homogenised station data set over Israel. Instrumental mete-
orological records may be affected by a number of non-mete-
orological factors, such as station relocation, instrumental 
issues, environmental changes near the station and more. 
These artificial factors can hamper the accuracy of the data 
and thus ought to be corrected by homogeneity techniques 
(Aguilar et al. 2003). Our dataset consists of five representa-
tive stations in Israel with a continuous, high-quality record 
of minimum temperatures for 1950–2017 (Table S1, Figure 
S1; Yosef et al. 2018).

2.2  The semi‑objective synoptic classification

The semi-objective synoptic classification of Alpert et al. 
(2004a) is used to identify Cyprus Lows. This classifica-
tion was found to closely reproduce the local weather condi-
tions over the Eastern Mediterranean, especially for Cyprus 
Lows (Saaroni et al. 2010a, b; Dayan et al. 2012; Hochman 
et al. 2018a, b). The classification is based on air tempera-
ture, geopotential height and wind components U and V at 
1000 hPa from the NCEP/NCAR reanalysis over the Eastern 
Mediterranean (27.5° N–37.5° N; 30° E–40° E; Figure S1). 

Such methodology allows us to define two subsets of Cyprus 
Low days: cold spell Cyprus Low days or ‘regular’ Cyprus 
Low days. The reader is referred to Alpert et al. (2004a) for 
a description of the full classification procedure.

2.3  Dynamical systems metrics

A recently developed method combining extreme value the-
ory with Poincaré recurrences allows computing the instan-
taneous properties of chaotic dynamical systems (Lucarini 
et al. 2016; Faranda et al. 2017a). In the present study, we 
consider a temporal succession of latitude–longitude maps 
for a given atmospheric variable, which we interpret as a 
long trajectory in phase space. Each map corresponds to 
a single point along this trajectory, for which local prop-
erties are computed. The analysis focuses on two metrics, 
namely the local dimension (d) and the persistence (θ−1). As 
outlined in Sect. 1, these two metrics can be linked to the 
intrinsic predictability of the atmosphere.

The local dimension (d) is estimated from the system’s 
recurrences around the state of interest, for example a spe-
cific two-dimensional atmospheric map of sea-level pres-
sure (SLP). Mathematically, the procedure stems from the 
result that the cumulative probability distribution of suitably 
defined recurrences of the system converges to the exponen-
tial member of the Generalized Pareto Distribution (Freitas 
et al. 2010; Lucarini et al. 2012). In practice, d measures the 
geometry of the trajectories in a small region of the system’s 
phase space. It is therefore linked to the number of active 
degrees of freedom that a system can explore locally, or 
alternatively to the way the system approaches and departs 
from a given state.

The persistence (θ−1) of a state is computed by estimat-
ing the extremal index (Moloney et al. 2019), here obtained 
using the estimator developed by Süveges (2007). θ−1 is a 
measure of the persistence time of the system in the above-
mentioned small region of the phase space. θ−1 tends to be 
sensitive to small changes in the state of the system. How-
ever, Hochman et al. (2019) found that relative differences 
in the dynamical systems persistence may be directly linked 
to the more conventional notion of differences in the per-
sistence of synoptic systems. For a brief overview of the 
computation of the above-mentioned metrics, the reader 
is referred to Appendix 1. Further details can be found in 
Lucarini et al. (2016) and Faranda et al. (2017a, 2019a).

Here, we specifically compute d and θ−1 for daily and 
6-hourly SLP and 500 hPa geopotential height (Z500) fields 
from the NCEP/NCAR reanalysis over the Eastern Medi-
terranean (27.5° N–37.5° N; 30° E–40° E, same as for the 
synoptic classification; Figure S1). We further evaluate the 
dynamical systems metrics’ sensitivity to the size and loca-
tion of the domain they are computed on by testing three 
other domains: (1) a large domain [27.5° N–45° N; 15° 
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E–50° E]; (2) a domain as large as the synoptic classifica-
tion region, but centred on the average location of Cyprus 
Lows, i.e., east of Cyprus [30° N–40° N; 30° E–40° E]; (3) 
a domain extending more to the east to better capture east-
ward-shifted cyclonic features, such as those associated with 
cold spells [30° N–40° N; 30° E–45° E]. Figure S2 shows 
the different domains used for the sensitivity analysis. These 
sensitivity tests are implemented for both the daily distribu-
tions and the 6-hourly temporal evolutions of the dynamical 
systems metrics. To study the sensitivity of the dynamical 
systems metrics to the depth and location of Cyprus Lows, 
we follow the semi-objective synoptic classification  of Alp-
ert et al. (2004a).

To understand the differences between cold spells and 
‘regular’ Cyprus Low days, we analyse both the CDFs and 
the mean temporal evolution of the two groups of days in 
terms of d and θ−1. The Kolmogorov–Smirnov (for the 
CDFs) and Wilcoxson Rank-Sum (for the medians) tests 
are used for evaluating the differences between the two sets 
of days at the 5% significance level. A bootstrap sampling 
procedure is used to evaluate the 95% confidence intervals 
of the mean temporal evolutions. For the latter, we focus our 
analysis on the first day of every cold spell or Cyprus Low 
and at 00UTC (0 h in Figs. 6 and 9), which should roughly 
correspond to the time of lowest temperature.

2.4  Forecast spread/skill

In order to obtain a numerical ensemble forecast, several 
forecasts are performed either with slightly different initial 
conditions, and/or with slightly different model formulations 
or stochastic components in the model. Unlike determinis-
tic forecasts, ensemble forecasts provide an effective way 
of characterizing uncertainty in an operational setting, by 
computing the ensemble spread. This is typically quanti-
fied as the standard deviation between members. Forecast 
spread can be interpreted as a measure of practical predict-
ability. Conventionally, a small spread is interpreted as the 
forecast giving a high degree of confidence regarding the 
future weather (in other terms, a high practical predictabil-
ity). On the other hand, a large spread is interpreted as advis-
ing more caution (a low practical predictability). This type 
of approach is extensively used in the study of atmospheric 
predictability (e.g., Buizza 1997; Hohenegger et al. 2006; 
Ferranti et al. 2015), although it has some limitations (see 
e.g. Hopson 2014, and references therein). We specifically 
note that the forecast spread for individual forecasts may 
provide a useful indication of predictability, but should not 
be over-interpreted.

Another oft-used forecast diagnostic is the absolute error, 
which provides a measure of forecast skill. In this study, 
we use the station dataset described in Sect. 2.1 above as 
ground truth to compute the forecasts’ absolute error. The 

GEFS reforecast gridded data is bilinearly interpolated to the 
station locations in order to remove biases due to elevation 
differences between the model grid and the stations. For 
each station, the systematic bias calculated over the whole 
period is removed.

The forecasts are initialized once a day at 00 UTC and are 
available at three-hour lead-time intervals. Since our analy-
sis focuses on cold spells, we estimate the spread/skill for 
minimum temperature and SLP at a lead-time of 69 h. Given 
the three-hour interval of the forecast data, and considering 
that the stations measure the minimum temperature at some 
point between 20 and 20 UTC of the next day, we argue that 
this time-window most closely resembles the definition of 
the minimum temperature for the station data. As for the 
dynamical systems metrics (Sect. 2.3), we centre our analy-
sis on the first day of every cold spell or Cyprus Low and at 
00UTC (0 h in Figs. 8 and 11), which should again roughly 
correspond to the time of lowest temperature.

As a measure for the practical predictability on a given 
day, we use the spread and error at a lead time of 69 h for the 
forecast initialised on that day. Since the dynamical systems 
metrics provide information on the evolution of the atmos-
phere in the vicinity of a given reference state, we argue that 
this quantity is the most indicative for relating the dynamical 
systems and numerical forecast analyses. In the supplemen-
tary information, we also provide additional figures with a 
shifted time axis, which show the spread and error for the 
forecast initialised 69 h prior to the marked time. In other 
words, the plots in the main paper show forecast initialisa-
tion times, while those in the supplementary information 
show the times at which the forecasts are valid. A bootstrap 
sampling procedure is used to evaluate the 95% confidence 
interval of mean forecast spread and error. The Kolmogo-
rov–Smirnov (for the CDFs) and Wilcoxson Rank-Sum (for 
the medians) tests are used for comparing forecast diagnos-
tics on different sets of days at the 5% significance level.

2.5  Air parcel tracking

Ten-day kinematic backward trajectories are computed using 
the Lagrangian Analysis Tool (LAGRANTO; Sprenger and 
Wernli 2015). The vertical and horizontal wind components 
needed for the trajectory computations are taken from the 
ERA-Interim reanalysis (Dee et al. 2011, Sect. 2.1). A sche-
matic overview of the typical steps for trajectory computa-
tion is provided in Fig. 2 in Sprenger and Wernli (2015). 
The trajectories are initialized at 00UTC from each grid 
point in the study region on the first day of a cold spell or a 
´regular´ Cyprus Low (Figure S1). In order to analyse the 
near surface air masses, we consider trajectories that are 
initialized every 30 hPa between the surface and 850 hPa. 
Insights about the physical properties of the air parcels are 
obtained by tracking the temperature, potential temperature, 
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and specific humidity along the trajectories. Changes in 
potential temperature along the trajectories can be attributed 
to diabatic processes such as condensational heating, radia-
tive heating and sensible heating (e.g., Bieli et al. 2015). 
Increases in specific humidity indicate moisture uptake due 
to evaporative processes in or above the boundary layer, tur-
bulent fluxes, or convection (e.g., Sodemann et al. 2008). 
One important limitation in the trajectory computation is 
that the horizontal and vertical wind fields do not resolve 
convection explicitly. Still, case studies and climatological 
studies reveal that the ERA-Interim reanalysis is suitable 
for the Lagrangian process understanding (e.g., Martius and 
Wernli 2012).

3  Results

3.1  Seasonality of the dynamical systems metrics

Previous studies have shown that the dynamical systems 
metrics d and θ, have a strong seasonal dependence (Faranda 
et al. 2017a, b; Rodrigues et al. 2018). Thus, we remove 
the seasonal cycle before comparing the various events. The 
seasonal cycle is estimated by averaging the metrics for a 
given date and time (e.g., 5th January at 00UTC) over all 
years, repeating this operation for all timesteps within the 
year (i.e., from 1st January to 31st December) and finally 
smoothing the series with a 30-day moving average. The 
comparison between cold spells and ‘regular’ Cyprus Lows 
presented in the following sections are all performed using 
de-seasonalized values of d and θ. The seasonal cycle of d 
and θ is computed on SLP and Z500 over the Eastern Medi-
terranean. For the former, d and θ display roughly in-phase 
winter and summer minima (high intrinsic predictability) 
and maxima in the shoulder seasons, out-of-phase by 1–2 
months (low intrinsic predictability; Fig. 1a). The two min-
ima are comparable for d, while for θ the summer minimum 
is more pronounced than the winter one. Cyprus Lows are 
frequent yet not dominant during winter (~ 33% of the winter 
days; Hochman et al. 2018a). Thus, the wintertime average 
values of the dynamical systems metrics likely reflect the 
occurrence of other synoptic classes such as high-pressure 
systems, which display lower θ and d values than the Cyprus 
Lows (higher intrinsic predictability; Hochman et al. 2019). 
Indeed, the median d value for Cyprus Lows is 5.78, while 
for other days it is 5.39. The same is true for θ (0.81 vs. 
0.75). Both differences are significant at the 5% significance 
level under the Kolmogorov–Smirnov (for the CDFs) and 
Wilcoxson Rank-Sum (for the medians) tests. On the other 
hand, the Persian Trough, which dominates the summer 
months (~ 90% of the summer days; Alpert et al. 2004b), is 
known to be a relatively persistent and stable atmospheric 
configuration (Alpert et al. 1990b) and indeed displays very 

low θ and reasonably low d values (Hochman et al. 2019). 
Hence, the Persian Trough does account for the bulk of the 
summertime values of the dynamical systems metrics. A 
similar pattern is obtained for Z500 (Fig. 1b), although the 
spring peak in d is shifted towards the summer months, and 
the d summer minimum is less marked.

The maxima of d and θ in the shoulder seasons, cor-
responding to high local dimensions and low persistence, 
reflect that these are periods when a variety of different syn-
optic systems affect the region (e.g., Alpert and Ziv 1989; 
Krichak et al. 1997). The coexistence and interaction of both 
winter and summer systems leads to a high-dimensional, 
unstable flow. In Faranda et al. (2017b), seasonal maxima in 
the local dimension of atmospheric flows were interpreted as 
saddle-like points of the atmospheric dynamics. The above 
supports the notion that the dynamical systems metrics are 
modulated by the seasons and reflect synoptic configurations 
in the Eastern Mediterranean.

3.2  Dynamics of cold spells over the Eastern 
Mediterranean

Virtually all cold spells in the Eastern Mediterranean are 
associated with Cyprus Lows (96% of the ones considered 
here). However, it is quite rare for a Cyprus Low to actually 
lead to a cold spell associated with snow cover in Jerusalem. 
From an atmospheric dynamics’ viewpoint, the cold spells 
are associated with a pronounced upper level trough in Z500 
and a more eastern cyclone centre than other Cyprus Lows 
(Fig. 2). This induces a cold northerly flow, occasionally 

Fig. 1  The seasonal cycle of the dynamical systems metrics d (local 
dimension) and θ (1/persistence). The dynamical systems metrics are 
computed on: a sea level pressure—SLP and b 500 hPa geopotential 
height—Z500
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even coming from the Arctic and/or Siberia (Wolfson and 
Adar 1975; Goldreich 2003). The backward trajectory air 
parcel analysis illustrates that the flow preceding a cold spell 
follows a more northerly and continental pathway than the 
sample for all Cyprus Lows (cf. Fig. 3a and b). The main dif-
ference in the air parcels’ physical properties is that the ini-
tial potential temperature, temperature and specific humid-
ity of the cold spells’ parcels are lower than the Cyprus 
Lows’ ones by about 12 K, 10 K and 1 g kg−1, respectively 
(Fig. 3d–f). The differences in potential temperature between 
the two groups can mainly be attributed to the poleward ori-
gin of the air masses associated with the cold spells.

From a dynamical systems point of view, the cold 
spells and Cyprus Lows also exhibit substantial differ-
ences. Figure 4 shows the CDFs for d and θ computed on 
SLP and Z500. θ is significantly lower for the cold spells 
relative to Cyprus Lows, i.e., the snow events are gener-
ally more persistent (Fig. 4b, d). We note however that a 
small number of ‘regular’ Cyprus Lows do display rela-
tively high persistence (low θ computed on SLP), but do 
not lead to snow in Jerusalem (Fig. 4b). A more complex 
picture arises for the local dimension. For SLP, there is 
no significant difference between the two CDFs and their 
medians according to the Wilcoxson Rank-sum and Kol-
mogorov–Smirnov tests (Fig. 4a). On the contrary, Z500 
shows a significantly lower d for the cold spells than for 
all Cyprus lows (Fig. 4c).

Next, we test the sensitivity of the dynamical systems 
metrics to the depth and location of the Cyprus Low using 
both the Kolmogorov–Smirnov and Rank-Sum tests at the 
5% significance level. We find that deeper Cyprus Lows 
display significantly higher values of d and θ (low intrin-
sic predictability) computed on SLP (Fig. 5a, b; Hochman 
et al. 2019). However, Eastern Cyprus Lows show signifi-
cantly higher d and lower θ relative to Western Cyprus 

Lows (Fig. 5c, d). This suggests that both the location and 
depth of a cyclone play an important role in determining 
its intrinsic predictability. Computing d and θ on Z500 
shows a completely different picture. In this case, deep 
Cyprus Lows show significantly lower d and θ values 
(high intrinsic predictability) relative to shallow lows 
(Fig. 5e, f). However, Eastern lows still show significantly 
higher d and lower θ relative to Western lows (Fig. 5g, 
h). This again advises that both the depth and location 
of the Cyprus Low play an important role in determin-
ing the intrinsic predictability also at Z500. These results 
also point to the different ways in which upper and lower 
level flows reflect on the intrinsic predictability of the 
atmosphere.

Figure 6 displays the average temporal evolution of d 
and θ, again computed for both SLP and Z500. The data is 
centred on 00UTC of the first day of snow or Cyprus Low 
(0 h in the Figure). Still, precipitation associated with a 
Cyprus Low event may occur a few hours following the 
development of the cyclone. Substantial differences are 
found between the cold spells and ‘regular’ Cyprus Lows. 
For SLP, cold spells typically display an above-climatol-
ogy d, which increases up to small negative lags and then 
decreases rapidly (Fig. 6a). θ shows a similar pattern, but 
mostly displays near-climatology persistence in the lead 
up to the event. The ‘regular’ Cyprus Lows display a less 
pronounced life-cycle, characterised by lower values of 
d and a slightly lower persistence in the days preceding 
the onset of the event (Fig. 6b). The build-up to the cold 
spells is therefore high-dimensional (pointing to a low 
intrinsic predictability), yet with a near-climatological or 
even slightly above-average persistence, which is prob-
ably a pre-requisite for intense cold air mass transport to 
the region. Interestingly, the peaks in d and θ occurring 
in the ~ 48 h prior to the event onset coincide with the 

Fig. 2  Sea level pressure (shading in hPa) and 500 hPa geopotential 
height (white contours in m) composites for cold spells associated 
with snowfall in Jerusalem, Cyprus Low days without the snowfall 

events, and their difference. a Cold spells mean composite; b Cyprus 
Lows without snowfall mean composite; c difference between cold 
spells and other Cyprus Lows
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time interval for which the majority of the cold-spell air 
parcels reach the Mediterranean Sea and rapidly increase 
their potential temperature, temperature and specific 
humidity at approximately 900 hPa height (Fig. 3). This 
may point to the role of upward sensible and latent heat 
fluxes, when cold air interacts with the warm Mediter-
ranean Sea, in affecting the dynamical properties of the 
atmospheric flow. These fluxes play an important role 
in the generation and intensification of Cyprus Lows, 
and may thus conceivably influence their predictability 
(Stein and Alpert 1993; Alpert et al. 1995). We provide 
further evidence to support this hypothesis by comparing 
d and θ computed on SLP for the upper and lower 10% 
of Lagrangian changes in specific humidity. The changes 
in specific humidity are calculated along the trajectories 
of events between − 48 h and 0 h. As shown in Fig. 7, 

d(θ) is significantly higher (lower) for large changes in 
the specific humidity. Though this statistical analysis 
does not demonstrate causal relationship, it does provide 
a plausibility argument for the important role the rate 
of moisture uptake, likely due to air-sea fluxes, plays in 
determining the intrinsic predictability of Cyprus Lows 
and particularly cold spells. 

The dynamical systems metrics computed on Z500 
show a radically different picture. The temporal evolu-
tions of d and θ for the cold spells are again in phase with 
each other, but now show a minimum in the hours pre-
ceding the events’ onsets (Fig. 6c). The ‘regular’ Cyprus 
Lows again display a more subdued life-cycle (Fig. 6d). 
The apparent contradiction between the SLP and Z500 
results may be partly reconciled by considering the verti-
cal structure of Cyprus Lows. We hypothesise that the 

Fig. 3  Median backward trajectory for a Cyprus Lows and b cold 
spells with circles indicating days (from 10  days before onset to 
onset), trajectory density 10  days before onset (shading in number 
of trajectories per 1000  km2), and trajectory density for the indicated 
time lags (5, 2, 1  days before onset, contours denote densities of a 
20 trajectories per 1000  km2 and b two trajectories per 1000  km2). 
Streamlines of 800  hPa winds averaged between − 5 to − 1  days 

before onset are included. Median evolution of c height (hPa), d 
potential temperature (K) e temperature (K), and f specific humidity 
(g  kg−1) of air parcels. Cyprus low events are indicated in red and 
cold spells in blue. The inter-quartile range is plotted for the physical 
properties of the air parcels. 0 h corresponds to the respective event 
onset, namely the first day of the event and at 00 UTC 
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two flanks of the upper level trough have lower intrinsic 
predictability (higher d and θ) than the central part of the 
trough. As the cyclone develops, we therefore expect the 
dynamical systems metrics to show a minimum in Z500 
(Fig. 6c), since the leading flank is the first to enter the 
domain, followed by the trough centre (see for example 
Figures S2 and S3 for the ‘Alexa’ cold spell). In addition, 
the maxima of d and θ computed for SLP occur several 
hours before the minima calculated for Z500. This likely 
reflects the westward tilt with height of the low-pressure 
systems, so that the upper level trough reaches the region 
later than the surface low (Fig. 2a and an example for 
the ‘Alexa’ cold spell in Figure S3). Finally, we note that 

variability in the temporal evolution of the dynamical sys-
tems metrics across the different cold spells is smaller in 
Z500 than in SLP (shading in Fig. 6). The different tem-
poral evolution of the dynamical systems metrics points 
to the value in using different variables at different levels 
to obtain a complete picture, but also to the interpreta-
tional challenges posed by this analysis approach.

We also assess the sensitivity of the dynamical sys-
tems metrics to the size and location of our geographical 
domain. No qualitative differences are found for shifts or 
small increases in the domain size (not shown). The only 
noticeable difference is found for the local dimension (d) 
distribution computed on SLP and for the largest domain 

Fig. 4  The de-seasonalized dynamical systems metrics’ (d and θ) 
cumulative distribution functions for cold spells associated with 
snowfall in Jerusalem (blue curves) and other Cyprus Lows (red 
curves). The dynamical systems metrics are computed on: a, b sea 

level pressure—SLP and c, d 500  hPa geopotential height—Z500. 
Significant differences between the CDFs and medians are marked 
with p < 0.05
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(Sect.  2.3, Figure S4a). For such a large domain, the 
dynamical systems analysis captures a large part of the 
subtropical high features alongside the cyclonic features 
(Figure S2). We therefore conclude that the dynamical 

systems metrics are in our case largely insensitive to 
domain size, as long as the main features of the synoptic 
system of interest are captured within the domain, and 

Fig. 5  The relation between the location/depth of a Cyprus Low and 
the associated de-seasonalized dynamical systems metrics (d and θ) 
computed on SLP (a–d) and Z500 (e–h). a, b, e, f Deep vs. shallow 

Cyprus Lows. c, d, g, h Eastern vs. Western Cyprus Lows. Significant 
differences between the CDFs and medians are marked with p < 0.05
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that such domain is not extended to the point of including 
other, concurrent synoptic systems.

We analyse next numerical ensemble forecasts from 
the GEFS reforecast dataset for both Cyprus Lows and 
cold spells. Cold spell forecasts typically display a higher 
spread than other Cyprus Lows at lead times of 69 h 
(Fig. 8b, f). The spread for both peaks at negative lags, 
indicating that forecasts initialised prior to the events are 
more uncertain than forecasts initialised during or after 
the events (Fig. 8a, e). This agrees with the information 
provided by the dynamical systems metrics computed on 

SLP, but contradicts the metrics computed on Z500. No 
significant differences are found between cold spells and 
Cyprus Lows in terms of the mean model absolute error 
(Fig. 8d). However, the two types of events exhibit a dif-
ferent temporal evolution, with the cold spells showing 
a peak in the absolute error 48 h prior to the event onset 
(Fig. 8c). The peak at 48 h corresponds to forecasts ini-
tialised just before the largest changes in d and θ com-
puted on both SLP and Z500 (cf. Fig. 8c with Fig. 6a, c). 
This points to the possibility that sharp changes in the val-
ues of the two dynamical systems metrics, corresponding 

Fig. 6  The average temporal evolution of the de-seasonalized dynam-
ical systems metrics (d and θ) for cold spells associated with snow 
cover in Jerusalem (a, c) and other Cyprus Lows (b, d). The dynami-
cal systems metrics are computed on: a, b sea level pressure—SLP 

and c, d 500 hPa geopotential height—Z500. The events are centred 
on the first day of a cold spell or Cyprus Low and at 00 UTC. A 95% 
bootstrap confidence interval is shown in shading
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to a rapid change in the properties of the atmospheric 
flow, may indicate lower practical predictability. The cor-
responding plots for forecast valid time (see Sect. 2.4), 
are provided in Figure S5. As the spread/skill relation for 
cold spells is relatively poor, only limited conclusions can 
be drawn from the ensemble reforecast analysis and from 
the parallels with the dynamical systems metrics. Gener-
ally, the spread/skill at the individual stations is compa-
rable to the average forecast spread/skill (not shown). The 
largest difference is found for Elat station (Table S1). This 
station is located at the southernmost tip of Israel and 

therefore may not be influenced by most Cyprus Lows 
and cold spells (Figure S1).

3.3  A detailed analysis of the ‘Alexa’ cold spell

The evolution of storm ‘Alexa’ is analysed as a case study 
(Fig. 9). The SLP and Z500 patterns for the first day of 
‘Alexa’ are comparable with the average configuration 
of a cold spell, albeit with a deeper upper level trough 
and a deeper surface cyclone (cf. Fig. 9a with Fig. 2a, 
noting the different colour ranges). Moreover, the tempo-
ral evolution of ‘Alexa’ from a dynamical systems point 
of view (Fig. 9b, c) closely resembles the climatologi-
cal signature of an average cold spell, only with larger 
absolute values (cf. Fig. 9b, c with Fig. 6a, c). These are 
not only due to the fact that we are not averaging over 
several events; indeed, ‘Alexa’ is a cold spell episode 
with one of the largest ranges of d and θ values over the 
considered time range. The ‘Alexa’ event is also located 
in the upper 1% of Cyprus Lows for d computed on SLP 
(Hochman et al. 2019), and in the lower 5% of d and θ 
computed on Z500. This suggests that ‘Alexa’ is not only 
an extreme event concerning its weather and impact, but 
also from a dynamical systems point of view. The deep 
Eastern Cyprus Low associated with ‘Alexa’ may have 
influenced the extreme values of the dynamical systems 
metrics (see Sect. 3.2).

The air parcel analysis reveals that storm ‘Alexa’ may 
be considered an archetype for Eastern Mediterranean 
cold spells. The parcels are embedded in a large-scale 
“omega” flow pattern over Europe and follow a pro-
nounced continental northerly pathway (Fig.  10a, b). 
Furthermore, the initial potential temperature and tem-
perature of the air parcels are much lower than the clima-
tology of cold spells by about 8 K and 6 K, respectively 
(cf. Fig. 10d, e with Fig. 3d, e). The largest d and θ val-
ues computed on SLP coincide with the arrival of the 
majority of air parcels over the Mediterranean (Fig. 10b), 
and the time at which they substantially increase their 
potential temperature, temperature and specific humid-
ity (Fig. 10d–f). Indeed, storm ‘Alexa’ is situated in the 
upper decile of change in specific humidity and potential 
temperature over the 48 h prior to the event onset, which 
may reflect on the dynamical systems metrics values for 
this event (see Sect. 3.2 and Fig. 7).

Figure 11 shows the temporal evolution of the forecast 
spread/skill for the ‘Alexa’ storm compared to the clima-
tology of cold spells. Throughout the lead up and early 
phases of the event, the forecast displays a higher error 
than for other cold spells (Fig. 11b). On the contrary, the 
spread peaks at 48 h before the event onset, but displays 
mostly lower values than other cold spells at other times 
(Fig. 11a, c). The temporal evolution of the SLP ensemble 

Fig. 7  The difference in the de-seasonalized dynamical systems met-
rics computed on SLP for Cyprus Lows split into the upper (solid 
blue lines) and lower 10% (solid red lines) of change in specific 
humidity over the 48 h before the event onset. a d (local dimension) 
b θ (1/persistence). Storm ‘Alexa’ is marked with a black arrow. Sig-
nificant differences between the CDFs and medians are marked with 
p < 0.05
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spread mirrors quite closely that of the dynamical systems 
metrics computed on SLP, peaking in the two days prior 
to the event’s onset (cf. Fig. 11c with Fig. 6a). Thus, the 
analysis of the ‘Alexa’ cold spell supports the results for 
the whole sample of cold spells associated with snow 
in Jerusalem. The corresponding plots for forecast valid 
time (see Sect. 2.4), are provided in Figure S6. While we 
argue (Sect. 2.4) that forecast initial time is closer to the 
information synthesised by the dynamical system metrics, 
we note that the picture changes when using forecast valid 
time, as a dip in SLP spread is present at small negative 
lags.

4  Summary and conclusions

We use a combination of dynamical systems theory, 
numerical weather forecasts and Lagrangian parcel track-
ing to investigate the evolution and predictability charac-
teristics of Eastern Mediterranean cold spells leading to 
snow in Jerusalem. We compare these to ‘regular’ Cyprus 
Lows—the dominant precipitation-bearing wintertime 
systems in the region. The choice of extreme event is 
motivated by the fact that Eastern Mediterranean cold 
spells are considered difficult to predict by the region’s 
forecasters (Wolfson and Adar 1975; Bitan and Ben-Rubi 
1978; Goldreich 2003).

Significant differences are found between cold spells 
and ‘regular’ Cyprus Lows from a dynamical sys-
tems perspective. When considering SLP, the intrinsic 

Fig. 8  Forecast spread/skill for cold spells associated with snowfall 
in Jerusalem (blue) and other Cyprus Lows (red). The lines show the 
mean temporal evolution of the ensemble model spread for Tmin (a), 
SLP (e) and absolute error for Tmin (c) of forecasts with lead-time 
69 h, initialized at different time lags with respect to the events, cal-

culated every 24 h. The CDFs of the mean ensemble forecast model 
spread for Tmin (b), SLP (f) and absolute error of Tmin (d) for the 
forecasts with lead-time 69 h, valid at the onset of the cold spell and 
Cyprus Low events. A 95% bootstrap confidence interval is shown in 
shading for the temporal evolution plots (a, c, e)
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predictability of cold spells is lowest, i.e., comparatively 
high local dimension (d) and low persistence (θ−1), at the 
time when the majority of air parcels associated with the 
inflow of cold air interact with the Mediterranean Sea. At 
this time, the parcels rapidly increase their temperature, 
potential temperature and specific humidity. This is likely 
related to intense air-sea fluxes, which play a prominent 
role in the generation and intensification of Cyprus Lows, 
thus influencing the ability to predict them (e.g., Davis 
and Emanuel 1988; Alpert et al. 1995). In this study, we 
provide new evidence for the important role that air-sea 
fluxes may play in determining the intrinsic predictability 

of Cyprus Lows and particularly cold spells. The dynami-
cal systems metrics computed on Z500 display a different 
temporal evolution to their SLP counterparts, highlighting 
the different characteristics of the atmospheric flow at 
the different levels. We further test the sensitivity of the 
dynamical systems metrics to the location and depth of 
Cyprus Lows, and conclude that both play a central part 
in determining the intrinsic predictability.

The detailed case-study of storm ‘Alexa’ provides 
further insights. While following a similar evolution to 
other cold spells (albeit with larger anomalies), ‘Alexa’ 
was poorly forecasted (Hochman et al. 2019), and we 
argue that the simple and inexpensive computation of the 
dynamical systems metrics and a comparison of their evo-
lution to that seen during previous cold spells, could have 
served as a red warning light for the region’s forecasters 
on the unusualness of the event. Specifically, signatures 
of regional extreme weather events might be reflected 
in the dynamical systems metrics, even in cases when 
the actual extreme is not well-simulated by numerical 
forecasting systems. We thus argue that this approach 
provides a complement to more conventional analyses 
based on atmospheric dynamics and ensemble numerical 
weather forecasts. This is particularly true in a warming 
world, a fact which adds another level of complexity to 
the tasks at hand (e.g., Faranda et al. 2019b; Hochman 
et al. 2020).

Finally, we tested the sensitivity of the dynamical sys-
tems metrics to the size of the domain they are computed 
on. We conclude that in our case the dynamical systems 
metrics are largely insensitive to domain size, as long as 
the main features of the weather systems of interest are 
captured. A logical next methodological step would be 
to compute the dynamical systems metrics for cyclonic 
events in a Lagrangian manner, i.e., tracking specific 
weather systems, in order to avoid biases linked to the 
choice of geographical domain.

While providing numerous insights on Eastern Medi-
terranean cold spells, our analysis has also highlighted 
how the interpretation of the dynamical systems results 
poses some challenges. When interpreting the dynami-
cal systems characteristics of Cyprus Lows/cold spells, a 
complex picture arises. For example, the depth/location 
of Cyprus Lows and the magnitude of air-sea fluxes influ-
ence d and θ−1 in apparently inconsistent ways. Moreo-
ver, the link between the physical properties of a cyclone 
and its predictability depends on the atmospheric level, 
the variable(s)  being considered, and on the specific 
property to be evaluated. The synergistic effects of these 
different factors were not evaluated here and will be dealt 
with in a follow-up study.

Similar  dif f icult ies  ar ise when relat ing the 
dynamical systems’  intrinsic predictability to the 

Fig. 9  A dynamical systems analysis for the ‘Alexa’ cold spell. Sea 
level pressure (shading in hPa) and 500  hPa geopotential height 
(white contours in m) on 12 December 2013 at 00UTC (a). The de-
seasonalized dynamical systems metrics’ temporal evolution centred 
on 12 December 2013 at 00 UTC computed on: b sea level pres-
sure—SLP and c 500 hPa geopotential height—Z500
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ensemble forecasts’ practical predictability. While the 
differences between the two may be partly ascribed 
to the different nature of the two quantities, they may 
also depend on shortcomings in our interpretation of 
the dynamical systems metrics or on shortcomings of 
the GEFS ensemble data. The latter ensemble, as most 
numerical ensemble forecasts, is under -dispersive (e.g., 
Kuene et  al. 2014). In other words, the spread of the 
ensemble members does not always reflect the range of 
possible future evolutions of the atmosphere, making the 
concept of practical predictability elusive.

To conclude, the two instantaneous dynamical systems 
metrics adopted in this study, and specifically their tem-
poral evolution, can provide a valuable complement to 
conventional analyses for the study of cold spells and 
their predictability. At the same time, care must be taken 
in interpreting them. Due to its computationally inexpen-
sive nature, we are convinced that a similar approach may 
be fruitfully applied to other geographical regions and 
weather extremes.

Fig. 10  Backward trajectory air parcel tracking for the ‘Alexa’ cold 
spell initialized on 12.12.2013 at 00 UTC (0 h in the panels) with a 
circles indicating days (from − 10 days to − 6 days before 12.12.2013 
at 00 UTC), trajectory density 10  days before onset (shading in 
number of trajectories per 1000  km2), stream lines of 800 hPa wind 
(averaged between − 10  days and − 6  days before 12.12.2013 at 00 

UTC). b as in a, but for − 5  days to − 1  day and trajectory density 
5 days before onset (shading in number of trajectories per 1000  km2). 
Median evolution of c height (hPa), d potential temperature (K), e 
temperature (K) and f specific humidity (g  kg−1) of the tracked air 
parcels. The inter-quartile range is plotted for the physical properties 
of the air parcels
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Appendix 1. Computation of the dynamical 
systems metrics

Here, we provide a brief overview of the computation of 
the d and θ−1 metrics used in the study. The metrics are 
issued from a dynamical system view of the evolution of our 
atmosphere, where we interpret each variable (strictly speak-
ing, observable) as a special Poincaré section of the full 
atmospheric dynamics. The temporal evolution of a given 
variable in a given geographical domain over time may then 
be represented as a long trajectory in phase-space. In turn, 
each latitude–longitude map for the chosen variable and at 
a given time corresponds to a single point along the trajec-
tory, for which local properties can be computed. Locality 
in phase space is thus equivalent to instantaneity in time.

We consider an observed trajectory x(t)—for example a 
succession of daily SLP maps—and a state of interest ξ, the 
latter corresponding in physical space to a latitude–longitude 
map of the chosen variable at a given time, and in phase-space 
to a given point along the variable’s trajectory. We then char-
acterise the recurrences of the system around ξ. In other terms, 
we search for timesteps at which the SLP displays similar lati-
tude–longitude maps to that of the state of interest. To identify 
these, we define the observable function g:

g(x(t), �) = −log(dist(x(t), �))

Fig. 11  Forecast spread/skill for the ‘Alexa’ cold spell centred on 
12.12.2013. The mean temporal evolution of the ensemble model 
spread for Tmin (a), SLP (c) and absolute error for Tmin (b) of 
forecasts with lead-time 69  h, initialized at different time lags with 
respect to the event, computed every 24 h

http://creativecommons.org/licenses/by/4.0/
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where dist is a distance function (in our case the Euclidean 
distance between the SLP maps). The application of the neg-
ative logarithm increases the discrimination of close recur-
rences, and also implies that g is large when dist is small. 
Recurrences may thus be identified based on g exceeding a 
high threshold s. Here, we chose s as the  98th percentile of 
g(x(t), ξ) itself, thus making s a function of ξ and of the cho-
sen percentile q. For all g(x(t), 𝜉) > s(q, 𝜉) , namely a recur-
rence, we can then define exceedances u as:

Following the Freitas-Freitas-Todd theorem (Freitas et al. 
2010), modified in Lucarini et al. (2012), the cumulative prob-
ability distribution F (u, ξ) converges to the exponential mem-
ber of the Generalised Pareto Distribution:

whose parameters depend on the chosen ξ. When apply-
ing this approach to a given dataset, each timestep—in 
our example each SLP latitude–longitude map—serves in 
turn as a state of interest. Then, g can be evaluated for that 
latitude–longitude map and the maps at each of the other 
timesteps in the dataset,    and the local (instantaneous) 
dimension d(ξ) is given by:

If x(t) contains the system’s full set of phase-space vari-
ables, then d is independent of the chosen dist for all ξ. In our 
practical application, this is naturally not the case and different 
choices of dist will yield different values of d. It is therefore 
important to interpret d in a relative, as opposed to absolute 
sense.

We can further compute the persistence of the state ξ from 
the a-dimensional extremal index ϑ (Moloney et al. 2019). We 
define the average residence time of the phase-space trajectory 
around ξ, or in other words the state’s persistence, as:

Here, Δt is the time interval between successive timesteps 
in our dataset, for example 1 day, and �−1 is the persistence in 
the same units as the timestep. We estimate the extremal index 
following Süveges (2007).

The above procedure results in a value of d and θ for 
every time step in our dataset. For the limits of applica-
bility to non-stationary systems and to comparatively short 
time series, the reader is referred to Freitas et al. (2017) and 
Buschow and Friederichs (2018).

u(t, �) = g(x(t), �) − s(q, �)

F(u, �) ≃ e

(

−�(�)
u(�)

�(�)

)

d(�) =
1

�(�)

�−1(�) =
Δt

�(�)
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