179 research outputs found

    Avalanche amplification of a single exciton in a semiconductor nanowire

    Full text link
    Interfacing single photons and electrons is a crucial ingredient for sharing quantum information between remote solid-state qubits. Semiconductor nanowires offer the unique possibility to combine optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical read-out of an exciton qubit state. Here we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunneling into a nanowire avalanche photodiode. Due to the large amplification of both electrons and holes (> 10^4), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards single-shot electrical read-out and offers a new functionality for on-chip quantum information circuits

    Competing mortality in patients diagnosed with bladder cancer: evidence of undertreatment in the elderly and female patients

    Get PDF
    Background: Bladder cancer (BC) predominantly affects the elderly and is often the cause of death among patients with muscleinvasive disease. Clinicians lack quantitative estimates of competing mortality risks when considering treatments for BC. Our aim was to determine the bladder cancer-specific mortality (CSM) rate and other-cause mortality (OCM) rate for patients with newly diagnosed BC. Methods: Patients (n ¼ 3281) identified from a population-based cancer registry diagnosed between 1994 and 2009. Median follow-up was 48.15 months (IQ range 18.1–98.7). Competing risk analysis was performed within patient groups and outcomes compared using Gray’s test. Results: At 5 years after diagnosis, 1246 (40%) patients were dead: 617 (19%) from BC and 629 (19%) from other causes. The 5-year BC mortality rate varied between 1 and 59%, and OCM rate between 6 and 90%, depending primarily on the tumour type and patient age. Cancer-specific mortality was highest in the oldest patient groups. Few elderly patients received radical treatment for invasive cancer (52% vs 12% for patients o60 vs 480 years, respectively). Female patients with high-risk non-muscle-invasive BC had worse CSM than equivalent males (Gray’s Po0.01). Conclusion: Bladder CSM is highest among the elderly. Female patients with high-risk tumours are more likely to die of their disease compared with male patients. Clinicians should consider offering more aggressive treatment interventions among older patients

    The Influence of Victim Vulnerability and Gender on Police Officers’ Assessment of Intimate Partner Violence Risk

    Get PDF
    This study investigated the influence of victim vulnerability factors and gender on risk assessment for intimate partner violence (IPV). 867 cases of male and female perpetrated IPV investigated by Swedish police officers using the Brief Spousal Assault Form for the Evaluation of Risk (BSAFER) were examined. For male-to-female IPV, victim vulnerability factors were associated with summary risk judgments and risk management recommendations. For femaleto-male IPV, vulnerability factors were more often omitted, and consistent associations were not found between vulnerability factors, summary risk judgments, and risk management. Results indicate that B-SAFER victim vulnerability factors can assist in assessing male-to-female IPV risk. Further research is necessary to examine the use of B-SAFER victim vulnerability factors for female-to-male IPV, as results showed victim vulnerability factors to be less relevant to officers’ decision making, particularly their management recommendations. However, several variables external to the B-SAFER, such as the availability of management strategies may account for these findings

    Biology of urothelial tumorigenesis: insights from genetically engineered mice

    Get PDF
    Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer

    Designing the selenium and bladder cancer trial (SELEBLAT), a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Belgium, bladder cancer is the fifth most common cancer in males (5.2%) and the sixth most frequent cause of death from cancer in males (3.8%). Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of bladder cancer. This suggests that selenium may also be suitable for chemoprevention of recurrence.</p> <p>Method</p> <p>The SELEBLAT study opened in September 2009 and is still recruiting all patients with non-invasive transitional cell carcinoma of the bladder on TURB operation in 15 Belgian hospitals. Recruitment progress can be monitored live at <url>http://www.seleblat.org.</url> Patients are randomly assigned to selenium yeast (200 μg/day) supplementation for 3 years or matching placebo, in addition to standard care. The objective is to determine the effect of selenium on the recurrence of bladder cancer. Randomization is stratified by treatment centre. A computerized algorithm randomly assigns the patients to a treatment arm. All study personnel and participants are blinded to treatment assignment for the duration of the study.</p> <p>Design</p> <p>The SELEnium and BLAdder cancer Trial (SELEBLAT) is a phase III randomized, placebo-controlled, academic, double-blind superior trial.</p> <p>Discussion</p> <p>This is the first report on a selenium randomized trial in bladder cancer patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00729287">NCT00729287</a></p

    Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content

    Get PDF
    Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop

    A growing role for gender analysis in air pollution epidemiology

    Full text link

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions
    corecore