11 research outputs found

    Hennessy-Milner Theorems via Galois Connections

    Get PDF
    We introduce a general and compositional, yet simple, framework that allows to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular, this framework allows to derive a new fixpoint characterization of directed trace metrics

    Hennessy-Milner Theorems via Galois Connections

    Get PDF
    We introduce a general and compositional, yet simple, framework that allows us to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular this framework allows us to derive a new fixpoint characterization of directed trace metrics

    Expressive Quantale-valued Logics for Coalgebras: an Adjunction-based Approach

    Full text link
    We address the task of deriving fixpoint equations from modal logics characterizing behavioural equivalences and metrics (summarized under the term conformances). We rely on earlier work that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois connections between suitable lattices. We instantiate this to the setting of coalgebras, in which we spell out the compatibility property ensuring that we can derive a behaviour function whose greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case, for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories, a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural metrics) and in the linear-time case (trace equivalences and trace distances)

    Heritable Epigenetic Variation among Maize Inbreds

    Get PDF
    Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation

    The use of gold for fabrication of nanowire structures

    No full text
    A common application of nanometer-sized gold particles is as seed particles for growth of semiconductor nanowires, which are believed to act as highly promising building blocks in future electronic devices. In a majority of the reports of successful nanowire growth, gold has been the seed particle material of choice. In this review article we identify the different types of gold particles used to initiate nanowire growth, namely gold particles made from thin films, gold particles defined by lithographic methods, colloidal gold particles and aerosol-generated gold particles. The production and deposition methods are described and the advantages and disadvantages of the particle types are discussed. In addition we discuss different properties that seem to make gold the most universal material for nanowire seed particles

    Simultaneous growth mechanisms for Cu-seeded InP nanowires

    No full text
    We report on epitaxial growth of InP nanowires (NWs) from Cu seed particles by metal-organic vapor phase epitaxy (MOVPE). Vertically-aligned straight nanowires can be achieved in a limited temperature range between 340 A degrees C and 370 A degrees C as reported earlier. In this paper we present the effect of the V/III ratio on nanowire morphology, growth rate, and particle configuration at a growth temperature of 350 A degrees C. Two regimes can be observed in the investigated range of molar fractions. At high V/III ratios nanowires grow from a solid Cu2In particle. At low V/III ratios, nanowire growth from two particle types occurs simultaneously: Growth from solid Cu2In particles, and significantly faster growth from In-rich particles. We discuss a possible growth mechanism relying on a dynamic interplay between vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) growth. Our results bring us one step closer to the replacement of Au as seed particle material as well as towards a deeper understanding of particle-assisted nanowire growth

    Epitaxial InP nanowire growth from Cu seed particles

    No full text
    Cu-seeded epitaxial growth of vertically aligned InP nanowires is reported for the first time. The nanowires were grown at temperatures between 290 and 420 degrees C by metal-organic vapor phase epitaxy (MOVPE) from particles formed from Cu thin films. In the temperature range of 340-370 degrees C high yields of vertically aligned nanowires could be achieved. The nanowire crystal structure and the particle composition were investigated by TEM and XEDS. The nanowires showed a zinc blende structure and a post-growth particle composition of 64 at% Cu and 36 at% In. (C) 2010 Elsevier B.V. All rights reserved

    A comparative study of the effect of gold seed particle preparation method on nanowire growth

    Get PDF
    Highly controlled particle-assisted growth of semiconductor nanowires has been performed for many years, and a number of novel nanowire-based devices have been demonstrated. Full control of the epitaxial growth is required to optimize the performance of devices, and gold seed particles are known to provide the most controlled growth. Successful nanowire growth from gold particles generated and deposited by various different methods has been reported, but no investigation has yet been performed to compare the effects of gold particle generation and deposition methods on nanowire growth. In this article we present a direct comparative study of the effect of the gold particle creation and deposition methods on nanowire growth characteristics and nanowire crystal structure, and investigate the limitations of the different generation and deposition methods used

    A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires.

    No full text
    Cathodoluminescence at 8 K is used to compare the optical properties of AlGaAs-capped GaAs nanowires, grown by metal-organic vapour phase epitaxy and seeded by gold particles prepared by different methods. Six different methods were used to fabricate and deposit gold seed particles onto GaAs substrates: colloid particles, aerosol particles and particles defined by electron beam lithography. The nanowires were grown with and without an in situ annealing step prior to the nanowire growth. The morphology showed no significant differences between the nanowires. The emissions from ensembles of nanowires have the same peak position, irrespective of seed particle type. Without the in situ annealing step prior to the nanowire growth, there are significant differences in the emission intensity and emission patterns from nanowires grown from different seed particles. When an in situ annealing step is included, all the resulting nanowires show identical optical emission intensity and emission patterns. This shows the importance of using an in situ annealing step prior to growth. This study demonstrates that different preparation methods for gold seed particles can be used to produce GaAs nanowires with highly similar optical properties. The choice of particle preparation method to be used can therefore be based on availability and cost
    corecore