8 research outputs found

    Positive end expiratory pressure in acute hypoxemic respiratory failure due to community acquired pneumonia: Do we need a personalized approach?

    Get PDF
    Background. Acute respiratory failure (ARF) is a life-threatening complication in patients with community acquired pneumonia (CAP). The use of non-invasive ventilation is controversial. With this prospective, observational study we aimed to describe a protocol to assess whether a patient with moderate-to-severe hypoxemic ARF secondary to CAP benefits, in clinical and laboratoristic terms, from the application of a positive end expiratory pressure (PEEP) + oxygen vs oxygen alone. Methods. Patients who benefit from PEEP application (PEEP-responders) were defined as those with partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2) increase > 20% and/or reduction of respiratory distress during PEEP + oxygen therapy compared to oxygen therapy alone. Clinical characteristics and outcomes were compared between PEEP-responders and PEEP-non responders. Results. Out of 41 patients, 27 (66%) benefit from PEEP application (PEEPresponders), the best response was obtained with a PEEP of 10 cmH2O in 13 patients, 7.5 cmH2O in eight and 5 cmH2O in six. PEEP-responders were less likely to present comorbidities compared to PEEP-non responders. No differences between groups were found in regards to endotracheal intubation criteria fullfillment, intensive care unit admission and in-hospital mortality, while PEEP-responders had a shorter length of hospital stay. Discussion. The application of a protocol to evaluate PEEP responsiveness might be useful in patients with moderate-to-severe hypoxemic ARF due to CAP in order to personalize and maximize the effectiveness of therapy, and prevent the inappropriate PEEP use. PEEP responsiveness does not seem to be associated with better outcomes, with the exception of a shorter length of hospital stay

    Noninvasive ventilation weaning in acute hypercapnic respiratory failure due to COPD exacerbation : A real-life observational study

    Get PDF
    The most recent British Thoracic Society/Intensive Care Society (BTS/ICS) guidelines on the use of noninvasive ventilation (NIV) in acute hypercapnic respiratory failure (AHRF) suggest to maximize NIV use in the first 24 hours and to perform a slow tapering. However, a limited number of studies evaluated the phase of NIV weaning. The aim of this study is to describe the NIV weaning protocol used in AHRF due to acute exacerbation of chronic obstructive pulmonary disease (AE-COPD), patients' characteristics, clinical course, and outcomes in a real-life intermediate respiratory care unit (IRCU) setting. We performed a retrospective study on adult patients hospitalized at the IRCU of San Gerardo Hospital, Monza, Italy, from January 2015 to April 2017 with a diagnosis of AHRF due to COPD exacerbation. The NIV weaning protocol used in our institution consists of the interruption of one of the three daily NIV sessions at the time, starting from the morning session and finishing with the night session. The 51 patients who started weaning were divided into three groups: 20 (39%) patients (median age 80 yrs, 65% males) who completed the protocol and were discharged home without NIV (Completed Group), 20 (39%) did not complete it because they were adapted to domiciliary ventilation (Chronic NIV Group), and 11 (22%) interrupted weaning ex abrupto mainly due to NIV intolerance (Failed Group). Completed Group patients were older, had a higher burden of comorbidities, but a lower severity of COPD compared to Chronic NIV Group. Failed Group patients experienced higher frequency of delirium after NIV discontinuation. None of the patients who completed weaning had AHRF relapse during hospitalization. While other NIV weaning methods have been previously described, our study is the first to describe a protocol that implies the interruption of a ventilation session at the time. The application of a weaning protocol may prevent AHRF relapse in the early stages of NIV interruption and in elderly frail patients

    Management of acute respiratory failure in interstitial lung diseases: overview and clinical insights

    No full text
    Abstract Background Interstitial lung diseases (ILDs) are a heterogeneous group of diseases characterized by widespread fibrotic and inflammatory abnormalities of the lung. Respiratory failure is a common complication in advanced stages or following acute worsening of the underlying disease. Aim of this review is to evaluate the current evidence in determining the best management of acute respiratory failure (ARF) in ILDs. Methods A literature search was performed in the Medline/PubMed and EMBASE databases to identify studies that investigated the management of ARF in ILDs (the last search was conducted on November 2017). Results In managing ARF, it is important to establish an adequate diagnostic and therapeutic management depending on whether the patient has an underlying known chronic ILD or ARF is presenting in an unknown or de novo ILD. In the first case both primary causes, such as acute exacerbations of the disease, and secondary causes, including concomitant pulmonary infections, fluid overload and pulmonary embolism need to be investigated. In the second case, a diagnostic work-up that includes investigations in regards to ILD etiology, such as autoimmune screening and bronchoalveolar lavage, should be performed, and possible concomitant causes of ARF have to be ruled out. Oxygen supplementation and ventilatory support need to be titrated according to the severity of ARF and patients’ therapeutic options. High-Flow Nasal oxygen might potentially be an alternative to conventional oxygen therapy in patients requiring both high flows and high oxygen concentrations to correct hypoxemia and control dyspnea, however the evidence is still scarce. Neither Non-Invasive Ventilation (NIV) nor Invasive Mechanical Ventilation (IMV) seem to change the poor outcomes associated to advanced stages of ILDs. However, in selected patients, such as those with less severe ARF, a NIV trial might help in the early recognition of NIV-responder patients, who may present a better short-term prognosis. More invasive techniques, including IMV and Extracorporeal Membrane Oxygenation, should be limited to patients listed for lung transplant or with reversible causes of ARF. Conclusions Despite the overall poor prognosis of ARF in ILDs, a personalized approach may positively influence patients’ management, possibly leading to improved outcomes. However, further studies are warranted

    Non-invasive mechanical ventilation in patients with diffuse interstitial lung diseases

    Get PDF
    Background: To evaluate noninvasive ventilation (NIV) in diffuse interstitial lung diseases (DILD) patients with acute respiratory failure (ARF) according to baseline radiological patterns and the etiology of ARF.Methods: In a multicenter, observational, retrospective study, consecutive DILD patients undergoing NIV because of an episode of ARF were evaluated in six Italian high dependency units. Three groups of patients were identified based on the etiology of ARF: those with pneumonia (Group A), those with acute exacerbation of fibrosis, (Group B) and those with other triggers (Group C). Clinical failure was defined as any among in-hospital mortality, endotracheal intubation and extra-corporeal membrane oxygenation use.Results: Among the 60 patients enrolled (63% males; median age: 71 years), pneumonia (42%) and acute exacerbation of fibrosis (39%) were the two most frequent causes of ARF. A significant increase of PaO2/FiO(2) ratio during NIV treatment was detected in Group A (p = 0.010), but not in Group B. No significant difference in PaO2/FiO(2) ratio, PaCO2 and pH values during NIV treatment was detected in patients with a radiological pattern of usual interstitial pneumonia (UIP) and non-specific interstitial pneumonia (NSIP). 22 patients (37%) suffered for a clinical failure. No significant differences in the study outcome were detected in Group A vs. Group B, as well as among patients with a radiological pattern of UIP vs. NSIP.Conclusions: NIV treatment should be individualized in DILD patients with ARF according to the etiology, but not the baseline radiological pattern, in order to improve oxygenation

    Enzymatic replacement therapy for Hunter disease: Up to 9 years experience with 17 patients

    No full text
    Hunter disease is an X-linked lysosomal storage disorder characterized by progressive storage of glycosaminoglycans (GAGs) and multi-organ impairment. The central nervous system (CNS) is involved in at least 50% of cases. Since 2006, the enzymatic replacement therapy (ERT) is available but with no effect on the cognitive impairment, as the present formulation does not cross the blood–brain barrier. Here we report the outcome of 17 Hunter patients treated in a single center. Most of them (11) started ERT in 2006, 3 had started it earlier in 2004, enrolled in the phase III trial, and 3 after 2006, as soon as the diagnosis was made. The liver and spleen sizes and urinary GAGs significantly decreased and normalized throughout the treatment. Heart parameters improved, in particular the left ventricular mass index/m2 decreased significantly. Amelioration of hearing was seen in many patients. Joint range of motion improved in all patients. However, no improvement on respiratory function, eye, skeletal and CNS disease was found. The developmental quotient of patients with a CNS involvement showed a fast decline. These patients were no more testable after 6 years of age and, albeit the benefits drawn from ERT, their quality of life worsened throughout the years. The whole group of patients showed a consistent residual disease burden mainly represented by persistent skeletal disease and frequent need of surgery. This study suggests that early diagnosis and treatment and other different therapies which are able to cross the blood–brain barrier, might in the future improve the MPS II outcome

    Management of acute respiratory failure in interstitial lung diseases: overview and clinical insights

    No full text
    corecore