11 research outputs found

    The natural stilbenoid (-)-hopeaphenol inhibits cellular entry of SARS-CoV-2 USA-WA1/2020, B.1.1.7, and B.1.351 variants

    Get PDF
    Antivirals are urgently needed to combat the global SARS-CoV-2/COVID- 19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host angiotensin-converting enzyme II (ACE2) receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here, we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 mM, in contrast to an IC50 of 28.3 mM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index, 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVDG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations [EC50s], 10.2 to 23.4 mM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s, 1.0 to 7.3 mM). Notably, (-)-hopeaphenol also inhibited two emerging variants of concern, B.1.1.7/Alpha and B.1.351/Beta in both viral and spike-containing pseudovirus assays with similar or improved activities over the USA-WA1/2020 variant. These results identify (-)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants of concern

    P-stranding, evasion, and what they (might) mean for ellipsis identity

    No full text
    International audienc

    MERIT40 controls BRCA1–Rap80 complex integrity and recruitment to DNA double-strand breaks

    No full text
    Rap80 targets the breast cancer suppressor protein BRCA1 along with Abraxas and the BRCC36 deubiquitinating enzyme (DUB) to polyubiquitin structures at DNA double-strand breaks (DSBs). These DSB targeting events are essential for BRCA1-dependent DNA damage response-induced checkpoint and repair functions. Here, we identify MERIT40 (Mediator of Rap80 Interactions and Targeting 40 kD)/(C19orf62) as a Rap80-associated protein that is essential for BRCA1–Rap80 complex protein interactions, stability, and DSB targeting. Moreover, MERIT40 is required for Rap80-associated lysine63–ubiquitin DUB activity, a critical component of BRCA1–Rap80 G2 checkpoint and viability responses to ionizing radiation. Thus, MERIT40 represents a novel factor that links BRCA1–Rap80 complex integrity, DSB recognition, and ubiquitin chain hydrolytic activities to the DNA damage response. These findings provide new molecular insights into how BRCA1 associates with independently assembled core protein complexes to maintain genome integrity

    Design and Synthesis of Nonpeptide Inhibitors of Hepatocyte Growth Factor Activation

    No full text
    In this letter we report first nonpeptide inhibitors of hepatocyte growth factor (HGF) activation. These compounds inhibit the three proteases (matriptase, hepsin, and HGF activator) required for HGF maturation. We show that <b>6</b>, <b>8a</b>, <b>8b</b>, and <b>8d</b> block activation of fibroblast-derived pro-HGF, thus preventing fibroblast-induced scattering of DU145 prostate cancer cells. Compound <b>6</b> (SRI 31215) is very soluble (91 μM) and has excellent microsome stability (human <i>t</i><sub>1/2</sub> = 162 min; mouse <i>t</i><sub>1/2</sub> = 296 min). In mouse <b>6</b> has an <i>in vivo</i> <i>t</i><sub>1/2</sub> = 5.8 h following IV administration. The high solubility of <b>6</b> and IV <i>t</i><sub>1/2</sub> make this compound a suitable prototype “triplex inhibitor” for the study of the inhibition of HGF activation <i>in vivo</i>
    corecore