74 research outputs found

    Complement C5a Functions as a Master Switch for the pH Balance in Neutrophils Exerting Fundamental Immunometabolic Effects

    Full text link
    During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis

    Modulation of neutrophil activity by soluble complement cleavage products — an in-depth analysis

    Get PDF
    The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies

    Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice

    Get PDF
    Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.</p

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis

    No full text
    Neutrophil granulocytes are the vanguard of innate immunity in response to numerous pathogens. Their activity drives the clearance of microbe- and damage-associated molecular patterns, thereby contributing substantially to the resolution of inflammation. However, excessive stimulation during sepsis leads to cellular unresponsiveness, immunological dysfunction, bacterial expansion, and subsequent multiple organ dysfunction. During the short lifespan of neutrophils, they can become significantly activated by complement factors, cytokines, and other inflammatory mediators. Following stimulation, the cells respond with a defined (electro-)physiological pattern, including depolarization, calcium influx, and alkalization as well as with increased metabolic activity and polarization of the actin cytoskeleton. Activity of ion transport proteins and aquaporins is critical for multiple cellular functions of innate immune cells, including chemotaxis, generation of reactive oxygen species, and phagocytosis of both pathogens and tissue debris. In this review, we first describe the ion transport proteins and aquaporins involved in the neutrophil ion–water fluxes in response to chemoattractants. We then relate ion and water flux to cellular functions with a focus on danger sensing, chemotaxis, phagocytosis, and oxidative burst and approach the role of altered ion transport protein expression and activity in impaired cellular functions and cell death during systemic inflammation as in sepsis

    Surgical resection of medulla oblongata hemangioblastomas: outcome and complications.

    No full text
    OBJECT: The purpose of this study was to analyze the surgical outcome and complications of a single-center series of medulla oblongata (MO) hemangioblastomas. METHODS: We retrospectively reviewed the medical charts of all medulla oblongata hemangioblastomas operated on at our institution between 1996 and 2015. All patients had a pre- and postoperative MRI and a minimum follow-up of 6 months. Patients were scored according to the Karnofsky Performance Scale (KPS) and McCormick Scale at the moment of admission, discharge and the last follow-up. RESULTS: Thirty-one surgical procedures were performed on 27 patients (16 females and 11 males). The mean age was 33 years, and 93 % of patients had von Hippel Lindau (VHL) disease. Three patients experienced very complicated postoperative courses, with one case ending in the death of the patient. Two patients required tracheostomy. According to McCormick's classification, 7 (23 %) of the 31 operations resulted in aggravation and 23 (74 %) in no change. Considering the seven patients with aggravation at discharge, four patients (60 %) returned to their preoperative status, one (14 %) improved but remained below his preoperative McCormick grade and two (29 %) did not improve. At last follow-up, KPS was ameliorated in 53 %, stable in 40 % and worsened in 7 % of cases. CONCLUSION: Surgery of medulla oblongata hemangioblastomas is a challenging procedure characterized by an acceptable morbidity. Transient morbidity is not negligible even if the long-term outcome is in most cases favorable. A compromised neurological condition seems to be the best predictor of unfavorable outcome

    Block of Voltage-Gated Sodium Channels by Aripiprazole in a State-Dependent Manner

    No full text
    Aripiprazole is an atypical antipsychotic drug, which is prescribed for many psychiatric diseases such as schizophrenia and mania in bipolar disorder. It primarily acts as an agonist of dopaminergic and other G-protein coupled receptors. So far, an interaction with ligand- or voltage-gated ion channels has been classified as weak. Meanwhile, we identified aripiprazole in a preliminary test as a potent blocker of voltage-gated sodium channels. Here, we present a detailed analysis about the interaction of aripiprazole with the dominant voltage-gated sodium channel of heart muscle (hNav1.5). Electrophysiological experiments were performed by means of the patch clamp technique at human heart muscle sodium channels (hNav1.5), heterologously expressed in human TsA cells. Aripiprazole inhibits the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state is weak with an extrapolated Kr of about 55 &micro;M. By contrast, the interaction with the inactivated state is strong. The affinities for the fast and slow inactivated state are in the low micromolar range (0.5&ndash;1 &micro;M). Kinetic studies indicate that block development for the inactivated state must be described with a fast (ms) and a slow (s) time constant. Even though the time constants differ by a factor of about 50, the resulting affinity constants were nearly identical (in the range of 0.5 &micro;M). Besides this, aripirazole also interacts with the open state of the channel. Using an inactivation deficit mutant, an affinity of about 1 &micro;M was estimated. In summary, aripiprazole inhibits voltage-gated sodium channels at low micromolar concentrations. This property might add to its possible anticancer and neuroprotective properties
    • 

    corecore