1,972 research outputs found

    An exemplar model should be able to explain all syntactic priming phenomena : a commentary on Ambridge (2020)

    Get PDF
    The authors argue that Ambridge’s radical exemplar account of language cannot clearly explain all syntactic priming evidence, such as inverse preference effects (greater priming for less frequent structures), and the contrast between short-lived lexical boost and long-lived abstract priming. Moreover, without recourse to a level of abstract syntactic structure, Ambridge’s account cannot explain abstract priming in amnesia patients or cross-linguistic priming. Instead, the authors argue that abstract representations remain the more parsimonious account for the wide variety of syntactic priming phenomena

    MObile Technology for Improved Family Planning: update to randomised controlled trial protocol.

    Get PDF
    BACKGROUND: This update outlines changes to the MObile Technology for Improved Family Planning study statistical analysis plan and plans for long-term follow-up. These changes result from obtaining additional funding and the decision to restrict the primary analysis to participants with available follow-up data. The changes were agreed prior to finalising the statistical analysis plan and sealing the dataset. METHODS/DESIGN: The primary analysis will now be restricted to subjects with data on the primary outcome at 4-month follow-up. The extreme-case scenario, where all those lost to follow-up are counted as non-adherent, will be used in a sensitivity analysis. In addition to the secondary outcomes outlined in the protocol, we will assess the effect of the intervention on long-acting contraception (implant, intra-uterine device and permanent methods).To assess the long-term effect of the intervention, we plan to conduct additional 12-month follow-up by telephone self-report for all the primary and secondary outcomes used at 4 months. All participants provided informed consent for this additional follow-up when recruited to the trial. Outcome measures and analysis at 12 months will be similar to those at the 4-month follow-up. The primary outcomes of the trial will be the use of an effective modern contraceptive method at 4 months and at 12 months post-abortion. Secondary outcomes will include long-acting contraception use, self-reported pregnancy, repeat abortion and contraception use over the 12-month post-abortion period. DISCUSSION: Restricting the primary analysis to those with follow-up data is the standard approach for trial analysis and will facilitate comparison with other trials of interventions designed to increase contraception uptake or use. Undertaking 12-month trial follow-up will allow us to evaluate the long-term effect of the intervention. TRIAL REGISTRATION: ClinicalTrials.gov NCT01823861

    Random template banks and relaxed lattice coverings

    Full text link
    Template-based searches for gravitational waves are often limited by the computational cost associated with searching large parameter spaces. The study of efficient template banks, in the sense of using the smallest number of templates, is therefore of great practical interest. The "traditional" approach to template-bank construction requires every point in parameter space to be covered by at least one template, which rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point in parameter space is covered only with a given probability < 1. We find that by giving up complete coverage in this way, large reductions in the number of templates are possible, especially at higher dimensions. The prime examples studied here are "random template banks", in which templates are placed randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this method turns out to be surprisingly efficient. We analyze the statistical properties of such random template banks, and compare their efficiency to traditional lattice coverings. We further study "relaxed" lattice coverings (using Zn and An* lattices), which similarly cover any signal location only with probability < 1. The relaxed An* lattice is found to yield the most efficient template banks at low dimensions (n < 10), while random template banks increasingly outperform any other method at higher dimensions.Comment: 13 pages, 10 figures, submitted to PR

    Installation of insecticide-treated durable wall lining: evaluation of attachment materials and product durability under field conditions.

    Get PDF
    BACKGROUND: Insecticide-treated durable wall lining (DL) is a new method of vector control designed to supplement LLINs and overcome two inherent limitations of LLINs and IRS: nightly behavioural compliance and short residual activity, respectively. DL is a deltamethrin-treated polyethylene material, which when used to cover interior house walls, functions as long-lasting IRS. Because the DL concept anticipates minimal upkeep, a primary challenge is how to guarantee correct household installation and in situ longevity for several years. Field trials were undertaken on various wall surfaces in Ghana to identify a logistically feasible, durable and re-usable method for DL wall attachment and to pilot new methods for assessing DL durability. METHODS: Over fifty-five candidate attachment or fixing products, including mechanical fasteners, material anchors and adhesives, were evaluated for their ability to tolerate static loads (simulating long-term installation) and short-term heavy weights (imitating shock damage). Attachment products were also scored using qualitative logistical and feasibility criteria, including ease of preparation, grip of fixing to DL and possibility of re-use. RESULTS: The stress tests provided a standardised, reproducible and reliable system for assessing fixing effectiveness and DL durability, with 64% (14/22) of adhesives and 15% (2/13) of mechanical fasteners failing to meet the minimum requirements of attaching DL to mud walls for set time periods. For most fixings, less outward load (0.2-8.0 kg) was required to detach DL from the wall, compared to downward load (0.2-19.2 kg). Fixings were better able to grip DL onto concrete than clay surfaces. Using a plastic nail cap to increase DL attachment area greatly improved grip and outward load tolerance, more so than varying nail size, length or texture. CONCLUSIONS: Based on a series of systematic stress tests, optimized fixing products for polyethylene DL wall attachment were identified. In parallel, a detailed and adaptable method of DL household installation was developed for routine deployment in malaria endemic areas. These standardized stress tests will form the basis for comparative evaluations of new types of DL textile, which incorporate non-pyrethroid insecticides to control malaria transmitted by resistant mosquito populations

    Origins of GEMS Grains

    Get PDF
    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates

    Rare Earth Element Measurements of Melilite and Fassaite in Allende Cai by Nanosims

    Get PDF
    The rare earth elements (REEs) are concentrated in CAIs by approx. 20 times the chondritic average [e.g., 1]. The REEs in CAIs are important to understand processes of CAI formation including the role of volatilization, condensation, and fractional crystallization [1,2]. REE measurements are a well established application of ion microprobes [e.g., 3]. However the spatial resolution of REE measurements by ion microprobe (approx.20 m) is not adequate to resolve heterogeneous distributions of REEs among/within minerals. We have developed methods for measuring REE with the NanoSIMS 50L at smaller spatial scales. Here we present our initial measurements of REEs in melilite and fassaite in an Allende Type-A CAI with the JSC NanoSIMS 50L. We found that the key parameters for accurate REE abundance measurements differ between the NanoSIMS and conventional SIMS, in particular the oxide-to-element ratios, the relative sensitivity factors, the energy distributions, and requisite energy offset. Our REE abundance measurements of the 100 ppm REE diopside glass standards yielded good reproducibility and accuracy, 0.5-2.5 % and 5-25 %, respectively. We determined abundances and spatial distributions of REEs in core and rim within single crystals of fassaite, and adjacent melilite with 5-10 m spatial resolution. The REE abundances in fassaite core and rim are 20-100 times CI abundance but show a large negative Eu anomaly, exhibiting a well-defined Group III pattern. This is consistent with previous work [4]. On the other hand, adjacent melilite shows modified Group II pattern with no strong depletions of Eu and Yb, and no Tm positive anomaly. REE abundances (2-10 x CI) were lower than that of fassaite. These patterns suggest that fassaite crystallized first followed by a crystallization of melilite from the residual melt. In future work, we will carry out a correlated study of O and Mg isotopes and REEs of the CAI in order to better understand the nature and timescales of its formation process and subsequent metamorphic history

    Stratospheric Collection of Dust from Comet 73P/Schwassmann-Wachmann 3

    Get PDF
    Interplanetary dust particles (IDPs) collected in the stratosphere are unique materials that are compositionally distinct from meteorites. Astronomical observations and dynamical models indicate that both asteroids and short-period comets are significant sources of IDPs. IDPs having fragile, porous structures, unequilibrated, anhydrous mineralogy, and high atmospheric entry velocities are thought to derive from comets, whereas asteroidal IDPs are identified by their compact structure, hydrated mineralogy and low atmospheric entry velocities. Uncertainty remains in the classification of asteroidal and cometary IDPs owing to our limited sampling of comets and the asteroid belt and the complex dynamical histories of most IDPs in space. Most IDPs spend thousands of years in space prior to being accreted by the Earth. During this time, dust particles undergo orbital evolution, including gradual reduction in their perihelion and eccentricity as a result of Poynting-Robertson drag. Planetary encounters may also significantly change their orbital parameters. Consequently, it is generally not possible to identify the specific parent body of a given IDP. However, it has been proposed that it is possible to identify dust from comets that have formed Earth-crossing dust trails. In this case, the dust particles have been in space for such a short period of time (a few decades or less) that their orbits have not significantly changed. Furthermore, these fresh IDPs could be identified in the laboratory from their short space-exposure histories (low solar noble gas abundance and lack of solar flare tracks). NASA flew several dedicated IDP collection missions attempting to collect dust from comet 26P/Grigg-Skjellerup, the best candidate identified. Remarkably, many particles from those collectors exhibit unusual properties, including low abundances of solar noble gases and high abundances of presolar grains. These observations are consistent with the dust particles originating from comet Grigg-Skjellerup (hereafter G-S). This study considers the prospects for collection of dust from comet 73P/Schwassmann-Wachmann 3 (hereafter SW3). SW3 is a small (2 km diameter) Jupiter family comet whose perihelion is close to and just inside the Earth's orbit. The orbit of SW3 is suitable for producing a low-velocity Earth-crossing dust stream and is the likely parent of the Tau Herculid meteor stream. This study complements a previously published model of the SW3 meteor stream that predicted a very low level of activity for grains 100 micron -- 100 mm in size

    Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    Get PDF
    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDP
    corecore