1,198 research outputs found

    Two stage low noise advanced technology fan. 1: Aerodynamic, structural, and acoustic design

    Get PDF
    A two-stage fan was designed to reduce noise 20 db below current requirements. The first-stage rotor has a design tip speed of 365.8 m/sec and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency of 85.3 percent at a specific inlet corrected flow of 209.2kg/sec/sq m. Noise reduction devices include acoustically treated casing walls, a flowpath exit acoustic splitter, a translating centerbody sonic inlet device, widely spaced blade rows, and the proper ratio of blades and vanes. Multiple-circular-arc rotor airfoils, resettable stators, split outer casings, and capability to go to close blade-row spacing are also included

    Two-stage fan. 2: Data and performance with redesigned second stage rotor uniform and distorted inlet flows

    Get PDF
    A two-stage fan with a first rotor tip speed of 1450 ft/sec (441.96 m/sec) and no inlet guide vanes was tested with uniform and distorted inlet flows, with a redesigned second rotor having a part span shroud to prevent flutter, with variable-stagger stators set in nominal positions, and without rotor casing treatment. The fan achieved a pressure ratio 2.8 at a corrected flow of 185.4 lbm/sec (84.0 kg/sec), an adiabatic efficiency of 85.0 percent, and a stall margin of 12 percent. The redesigned second rotor did not flutter. Tip radial distortion reduced the stall margin at intermediate speed, but had little effect on stall margin at high or low speeds. Hub radial distortion reduced the stall margin at design speed but increased stall margin at low speed. Circumferential distortion reduced stall pressure ratio and flow to give approximately the same stall lines with uniform inlet flow. Distortions were attenuated by the fan. For Vol. 1, see N74-11421

    A semi-coherent search strategy for known continuous wave sources in binary systems

    Full text link
    We present a method for detection of weak continuous signals from sources in binary systems via the incoherent combination of many "short" coherently-analyzed segments. The main focus of the work is on the construction of a metric on the parameter space for such signals for use in matched-filter based searches. The metric is defined using a maximum likelihood detection statistic applied to a binary orbit phase model including eccentricity. We find that this metric can be accurately approximated by its diagonal form in the regime where the segment length is << the orbital period. Hence correlations between parameters are effectively removed by the combination of many independent observation. We find that the ability to distinguish signal parameters is independent of the total semi-coherent observation span (for the semi-coherent span >> the segment length) for all but the orbital angular frequency. Increased template density for this parameter scales linearly with the observation span. We also present two example search schemes. The first uses a re parameterized phase model upon which we compute the metric on individual short coherently analyzed segments. The second assumes long >> the orbital period segment lengths from which we again compute the coherent metric and find it to be approximately diagonal. In this latter case we also show that the semi-coherent metric is equal to the coherent metric.Comment: 18 pages, 4 figure

    Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    Get PDF
    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated

    Bench Crater Meteorite: Hydrated Asteroidal Material Delivered to the Moon

    Get PDF
    D/H measurements from the lunar regolith agglutinates [8] indicate mixing between a low D/H solar implanted component and additional higher D/H sources (e.g., meteoritic/ cometary/volcanic gases). We have determined the range and average D/H ratio of Bench Crater meteorite, which is the first direct D/H analysis of meteoritic material delivered to the lunar surface. This result provides an important ground truth for future investigations of lunar water resources by missions to the Moon

    New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    Get PDF
    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5]

    A comparison of serum and plasma cytokine values using a multiplexed assay in cats

    Get PDF
    Degenerative joint disease (DJD) is highly prevalent in cats, and pain contributes to morbidity. In humans, alterations of cytokine concentrations have been associated with joint deterioration and pain. Similar changes have not been investigated in cats. Cytokine concentrations can be measured using multiplex technology with small samples of serum or plasma, however, serum and plasma are not interchangeable for most bioassays. Correlations for cytokine concentrations between serum and plasma have not been evaluated in cats

    Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    Get PDF
    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10−244 \times 10^{-24} Hz−1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10−266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10−251.2 \times 10^{-25} (25 Hz) to 2.2×10−262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure
    • …
    corecore