141 research outputs found

    NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation

    Get PDF
    Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes

    Signal transduction of mineralocorticoid and angiotensin ii receptors in the central control of sodium appetite: A narrative review

    Get PDF
    Sodium appetite is an innate behavior occurring in response to sodium depletion that induces homeostatic responses such as the secretion of the mineralocorticoid hormone aldosterone from the zona glomerulosa of the adrenal cortex and the stimulation of the peptide hormone angiotensin II (ANG II). The synergistic action of these hormones signals to the brain the sodium appetite that represents the increased palatability for salt intake. This narrative review summarizes the main data dealing with the role of mineralocorticoid and ANG II receptors in the central control of sodium appetite. Appropriate keywords and MeSH terms were identified and searched in PubMed. References to original articles and reviews were examined, selected, and discussed. Several brain areas control sodium appetite, including the nucleus of the solitary tract, which contains aldosterone‐sensitive HSD2 neurons, and the organum vasculosum lamina terminalis (OVLT) that contains ANG II‐sensitive neurons. Furthermore, sodium appetite is under the control of signaling proteins such as mitogen‐activated protein kinase (MAPK) and inositol 1,4,5‐thriphosphate (IP3). ANG II stimulates salt intake via MAPK, while combined ANG II and aldosterone action induce sodium intake via the IP3 signaling pathway. Finally, aldosterone and ANG II stimulate OVLT neurons and suppress oxytocin secretion inhibiting the neuronal activity of the paraventricular nucleus, thus disinhibiting the OVLT activity to aldosterone and ANG II stimulation

    Circadian rhythms of histatin 1, histatin 3, histatin 5, statherin and uric acid in whole human saliva secretion

    Get PDF
    The circadian rhythms of histatins 1, 3, 5, of statherin and uric acid were investigated in whole human saliva. Histatins showed a rhythm approximately synchronous with salivary flow rate (acrophase around 5 pm), the higher amplitude pertaining to histatin 1 (about 50% of the mesor). Uric acid showed a large rhythm asynchronous with flow rate and histatin concentrations (4.4 ± 1.4 am). Statherin did not show a significant circadian rhythm on five of six volunteers. This finding confirms that the secretion route of statherin is different from that of histatins

    Il complesso di gallerie drenanti Chianatelle-Felice-Olivella nel Parco Nazionale del Vesuvio (Napoli)

    Get PDF
    The Chianatelle-Felice-Olivella drainage galleries complex in the Vesuvius National Park (Naples) The Chianatelle-Felice-Olivella complex, located close to the village of Sant’Anastasia on Mt. Vesuvius, is constituted of 4 drainage galleries, each several tens of meters long, with a total drainage of about 0,1 l/s. Their present structure is due to the hydraulic works made, at the end of the 19th century by the king Ferdinando II of Bourbon, whereas the presence of an underground aquifer in this area had been noticed before the 79 a.C. eruption. The underground complex is not only an important archaeological site, but it is nowadays a part of the monitoring network for the Vesuvius volcanic risk assessment managed by the Istituto Nazionale di Geofisica e Vulcanologia. Some important variation of the geochemical characteristics of the Olivella 1 gallery were recorded in coincidence with the October 11, 1999, earthquake

    Nampt over-expression recapitulates the braf inhibitor resistant phenotype plasticity in melanoma

    Get PDF
    Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity

    Nampt over-expression recapitulates the braf inhibitor resistant phenotype plasticity in melanoma

    Get PDF
    Serine–threonine protein kinase B-RAF (BRAF)-mutated metastatic melanoma (MM) is a highly aggressive type of skin cancer. Treatment of MM patients using BRAF/MEK inhibitors (BRAFi/MEKi) eventually leads to drug resistance, limiting any clinical benefit. Herein, we demonstrated that the nicotinamide adenine dinucleotide (NAD)-biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) is a driving factor in BRAFi resistance development. Using stable and inducible NAMPT over-expression systems, we showed that forced NAMPT expression in MM BRAF-mutated cell lines led to increased energy production, MAPK activation, colony-formation capacity, and enhance tumorigenicity in vivo. Moreover, NAMPT over-expressing cells switched toward an invasive/mesenchymal phenotype, up-regulating expression of ZEB1 and TWIST, two transcription factors driving the epithelial to mesenchymal transition (EMT) process. Consistently, within the NAMPT-overexpressing cell line variants, we observed an increased percentage of a rare, drug-effluxing stem cell-like side population (SP) of cells, paralleled by up-regulation of ABCC1/MRP1 expression and CD133-positive cells. The direct correlation between NAMPT expression and gene set enrichments involving metastasis, invasiveness and mesenchymal/stemness properties were verified also in melanoma patients by analyzing The Cancer Genome Atlas (TCGA) datasets. On the other hand, CRISPR/Cas9 full knock-out NAMPT BRAFi-resistant MM cells are not viable, while inducible partial silencing drastically reduces tumor growth and aggressiveness. Overall, this work revealed that NAMPT over-expression is both necessary and sufficient to recapitulate the BRAFi-resistant phenotype plasticity

    Effects of supplementation frequency on the ruminal fermentation and enteric methane production of beef cattle grazing in tropical pastures.

    Get PDF
    Abstract: The objective of this study was to evaluate the characteristics of ruminal fermentation and enteric methane production in beef cattle subjected to different supplementation frequencies while grazing on Brachiaria brizantha cv. Marandu pastures. Nine cattle (325±65.7 kg BW) fitted with ruminal and duodenal cannulas were used in the ruminal fermentation study, and 12 cattle (399±32.6 kg BW) were used in the enteric methane production study. The treatments included supplementation once daily, supplementation once daily except Saturdays and Sundays, or supplementation on alternate days. The supplementation was equivalent to 10 g kg ?1 BW day ?1 for all treatments. The design employed was completely randomized with three treatments and three replications. When all supplements were provided (day 1), no effects of supplementation frequency were observed on ruminal pH; concentration of NH 3 -N; concentration of acetic, propionic, or butyric acids; or total volatile fatty acids (VFA), but there were month effects. During the day on which only daily supplements were provided (day 2), significant differences were observed only on the molar concentration of acetic acid and total VFA; and month effects were noted on all variables. No significant differences were observed in ruminal fluid volume, dilution rate, N intake, bacterial N synthesis and enteric methane production among the studied supplementation frequencies. Differences were observed in the enteric methane production in the different months, with 85 g kg ?1 of gross energy intake observed in September and 123 g kg ?1 of gross energy intake observed in November. Lower supplementation frequency is a good option to lower labor costs with little or no consequences on ruminal fermentation characteristics and enteric methane production

    Tumors carrying BRAF-mutations over-express NAMPT that is genetically amplified and possesses oncogenic properties

    Get PDF
    Background: Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis, is up-regulated in several cancers, including metastatic melanoma (MM). The BRAF oncogene is mutated in different cancer types, among which MM and thyroid carcinoma (THCA) are prominent. Drugs targeting mutant BRAF are effective, especially in MM patients, even though resistance rapidly develops. Previous data have linked NAMPT over-expression to the acquisition of BRAF resistance, paving the way for therapeutic strategies targeting the two pathways. Methods: Exploiting the TCGA database and a collection of MM and THCA tissue microarrays we studied the association between BRAF mutations and NAMPT expression. BRAF wild-type (wt) cell lines were genetically engineered to over-express the BRAF V600E construct to demonstrate a direct relationship between over-activation of the BRAF pathway and NAMPT expression. Responses of different cell line models to NAMPT (i)nhibitors were studied using dose–response proliferation assays. Analysis of NAMPT copy number variation was performed in the TCGA dataset. Lastly, growth and colony forming assays were used to study the tumorigenic functions of NAMPT itself. Results: The first finding of this work is that tumor samples carrying BRAF-mutations over-express NAMPT, as demonstrated by analyzing the TCGA dataset, and MM and THC tissue microarrays. Importantly, BRAF wt MM and THCA cell lines modified to over-express the BRAF V600E construct up-regulated NAMPT, confirming a transcriptional regulation of NAMPT following BRAF oncogenic signaling activation. Treatment of BRAF-mutated cell lines with two different NAMPTi was followed by significant reduction of tumor growth, indicating NAMPT addiction in these cells. Lastly, we found that several tumors over-expressing the enzyme, display NAMPT gene amplification. Over-expression of NAMPT in BRAF wt MM cell line and in fibroblasts resulted in increased growth capacity, arguing in favor of oncogenic properties of NAMPT. Conclusions: Overall, the association between BRAF mutations and NAMPT expression identifies a subset of tumors more sensitive to NAMPT inhibition opening the way for novel combination therapies including NAMPTi with BRAFi/MEKi, to postpone and/or overcome drug resistance. Lastly, the over-expression of NAMPT in several tumors could be a key and broad event in tumorigenesis, substantiated by the finding of NAMPT gene amplification
    corecore