5 research outputs found

    Kinetic parameters for thermal decomposition of microcrystalline, vegetal, and bacterial cellulose

    No full text
    Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles

    Synthesis and characterization of cellulose acetate produced from recycled newspaper

    No full text
    In this work, the viability of recycling newspaper for producing cellulose acetate was tested. Newspaper recycling is extremely important not only for the environment preservation, but also from the economical point of view of aggregating value to this residue. Cellulose acetate was produced from a homogeneous acetylation, and then characterized by FTIR, DSC and TGA. Acetylation times were 48 h for as received newspaper (CA48) and 24 h for delignified newspaper (CA24), resulting in cellulose diacetate (DS = 1.98 +/- 0.22) for CA48 and cellulose triacetate (DS = 2.79 +/- 0.02) for CA24, respectively. Membranes of these materials were produced and characterized according to the previously mentioned techniques and by measurements of water vapor flux, which were compared to membranes of nanofiltration SG from Osmonix (R). Results showed that independently of a purification step, it is possible to produce cellulose acetate membranes through the chemical recycling of newspaper and that membrane CA24 presents thermal stability comparable to membranes produced of commercial cellulose acetate. (C) 2007 Elsevier Ltd. All rights reserved

    Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers

    No full text
    International audienceWe report the fabrication and characterization of the first guiding chalcogenide As2S3 microstructured optical fibers (MOFs) with a suspended core. At 1.55 µm, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 µm. By pumping the fibers at 1.55 µm, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser
    corecore