36 research outputs found

    The relation between neuromechanical parameters and Ashworth score in stroke patients

    Get PDF
    Quantifying increased joint resistance into its contributing factors i.e. stiffness and viscosity ("hypertonia") and stretch reflexes ("hyperreflexia") is important in stroke rehabilitation. Existing clinical tests, such as the Ashworth Score, do not permit discrimination between underlying tissue and reflexive (neural) properties. We propose an instrumented identification paradigm for early and tailor made interventions.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    Muscle weakness and lack of reflex gain adaptation predominate during post-stroke posture control of the wrist

    Get PDF
    Instead of hyper-reflexia as sole paradigm, post-stroke movement disorders are currently considered the result of a complex interplay between neuronal and muscular properties, modified by level of activity. We used a closed loop system identification technique to quantify individual contributors to wrist joint stiffness during an active posture task. Continuous random torque perturbations applied to the wrist joint by a haptic manipulator had to be resisted maximally. Reflex provoking conditions were applied i.e. additional viscous loads and reduced perturbation signal bandwidth. Linear system identification and neuromuscular modeling were used to separate joint stiffness into the intrinsic resistance of the muscles including co-contraction and the reflex mediated contribution. Compared to an age and sex matched control group, patients showed an overall 50% drop in intrinsic elasticity while their reflexive contribution did not respond to provoking conditions. Patients showed an increased mechanical stability compared to control subjects. Post stroke, we found active posture tasking to be dominated by: 1) muscle weakness and 2) lack of reflex adaptation. This adds to existing doubts on reflex blocking therapy as the sole paradigm to improve active task performance and draws attention to muscle strength and power recovery and the role of the inability to modulate reflexes in post stroke movement disorders.Mechanical, Maritime and Materials Engineerin

    Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design

    Get PDF
    Main claims of the literature are that functional recovery of the paretic upper limb is mainly defined within the first month post stroke and that rehabilitation services should preferably be applied intensively and in a task-oriented way within this particular time window. EXplaining PLastICITy after stroke (acronym EXPLICIT-stroke) aims to explore the underlying mechanisms of post stroke upper limb recovery. Two randomized single blinded trials form the core of the programme, investigating the effects of early modified Constraint-Induced Movement Therapy (modified CIMT) and EMG-triggered Neuro-Muscular Stimulation (EMG-NMS) in patients with respectively a favourable or poor probability for recovery of dexterity.BioMechanical EngineeringMechanical, Maritime and Materials Engineerin

    Multimodal Monitoring of Cardiovascular Responses to Postural Changes

    No full text
    10.3389/fphys.2020.00168FRONTIERS IN PHYSIOLOGY1

    The use of a portable metabolic monitoring device for measuring RMR in healthy adults

    No full text
    10.1017/S0007114520001014BRITISH JOURNAL OF NUTRITION124111229-124

    The gap between clinical gaze and systematic assessment of movement disorders after stroke

    No full text
    Abstract Background Movement disorders after stroke are still captured by clinical gaze and translated to ordinal scores of low resolution. There is a clear need for objective quantification, with outcome measures related to pathophysiological background. Neural and non-neural contributors to joint behavior should be separated using different measurement conditions (tasks) and standardized input signals (force, position and velocity). Methods We reviewed recent literature for the application of biomechanical and/or elektromyographical (EMG) outcome measures under various measurement conditions in clinical research. Results Since 2005, 36 articles described the use of biomechanical and/or EMG outcome measures to quantify post-stroke movement disorder. Nineteen of the articles strived to separate neural and non-neural components. Only 6 of the articles measured biomechanical and EMG outcome measures simultaneously, while applying active and passive tasks and multiple velocities. Conclusion The distinction between neural and non-neural components to separately assess paresis, stiffness and muscle overactivity is not commonplace yet, while a large gap is to be bridged to attain reproducible and comparable results. Pathophysiologically clear concepts, substantiated with a comprehensive and concise measuring protocol will help professionals to identify and treat limiting factors in movement capabilities of post-stroke patients.</p
    corecore