23 research outputs found

    Anisotropic Rheology and Friction of Suspended Graphene

    Full text link
    Graphene is a powerful membrane prototype for both applications and fundamental research. Rheological phenomena including indentation, twisting, and wrinkling in deposited and suspended graphene are actively investigated to unravel the mechanical laws at the nanoscale. Most studies focused on isotropic set-ups, while realistic graphene membranes are often subject to strongly anisotropic constraints, with important consequences for the rheology, strain, indentation, and friction in engineering conditions

    Impact of experimental parameters on cell-cell force spectroscopy signature

    Get PDF
    Atomic force microscopy is an extremely versatile technique, featuring atomic-scale imaging resolution, and also offering the possibility to probe interaction forces down to few pN. Recently, this technique has been specialized to study the interaction between single living cells, one on the substrate, and a second being adhered on the cantilever. Cell–cell force spectroscopy offers a unique tool to investigate in fine detail intra-cellular interactions, and it holds great promise to elucidate elusive phenomena in physiology and pathology. Here we present a systematic study of the effect of the main measurement parameters on cell–cell curves, showing the importance of controlling the experimental conditions. Moreover, a simple theoretical interpretation is proposed, based on the number of contacts formed between the two interacting cells. The results show that single cell–cell force spectroscopy experiments carry a wealth of information that can be exploited to understand the inner dynamics of the interaction of living cells at the molecular level

    Antibacterial Effect of Aluminum Surfaces Untreated and Treated with a Special Anodizing Based on Titanium Oxide Approved for Food Contact

    Get PDF
    One of the main concerns of the food industry is microbial adhesion to food contact surfaces and consequent contamination. We evaluated the potential bacteriostatic/bactericidal efficacy of aluminum surfaces with different large-scale roughness (0.25, 0.5 and 1 um) before and after the surface treatment with a special anodizing based on titanium oxide nanotechnology (DURALTI®) and after 3 different sanitizing treatments, e.g., UV, alcohol and a natural product named Gold lotion. Four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) bacteria were screened. As far as concerns aluminum surfaces without nanotechnology surface treatment, an overall bacteriostatic effect was observed for all strains with respect to the initial inoculum that was 106 CFU/mL. Conversely, an overall bactericidal effect was observed both for Gram-negative and -positive bacteria on DURALTI®-treated aluminum disks, regardless of roughness and sanitizing treatment. These results are innovative in terms of the great potential of the antibacterial activity of nanotechnologically treated food contact surfaces and their combination with some sanitizing agents that might be exploited in the food industry

    Antibacterial Effect of Stainless Steel Surfaces Treated with a Nanotechnological Coating Approved for Food Contact

    Get PDF
    Stainless steel, widely present in the food industry, is frequently exposed to bacterial colonization with possible consequences on consumers’ health. 288 stainless steel disks with different roughness (0.25, 0.5 and 1 μm) were challenged with four Gram-negative (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1402, Yersinia enterocolitica ATCC 9610 and Pseudomonas aeruginosa ATCC 27588) and four Gram-positive bacteria (Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus cereus ATCC 14579 and Listeria monocytogenes NCTT 10888) and underwent three different sanitizing treatments (UVC, alcohol 70% v/v and Gold lotion). Moreover, the same procedure was carried out onto the same surfaces after a nanotechnological surface coating (nanoXHAM® D). A significant bactericidal effect was exerted by all of the sanitizing treatments against all bacterial strains regardless of roughness and surface coating. The nanoXHAM® D coating itself induced an overall bactericidal effect as well as in synergy with all sanitizing treatments regardless of roughness. Stainless steel surface roughness is poorly correlated with bacterial adhesion and only sanitizing treatments can exert significant bactericidal effects. Most of sanitizing treatments are toxic and corrosive causing the onset of crevices that are able to facilitate bacterial nesting and growth. This nanotechnological coating can reduce surface adhesion with consequent reduction of bacterial adhesion, nesting, and growth

    Comprehensive study of SrF2 growth on highly oriented pyrolytic graphite (HOPG): Temperature-dependent van der Waals epitaxy

    Get PDF
    This study explores the molecular beam epitaxy (MBE) growth of SrF2 on highly oriented pyrolytic graphite (HOPG) highlighting the temperature-dependent variations in growth morphology, crystalline structure and electronic properties. The comprehensive characterization of SrF2/HOPG interfaces was carried out using atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). The spectroscopy data suggest that the chemical interaction of the fluoride with the substrate is weak at each deposited thickness and temperature of the substrate during the deposition, indicating a growth under a van der Waals epitaxial regime. SrF2 nanostructures deposited on HOPG depict a distinctive bulk-like character, concerning their crystallinity and composition, even at the very initial growth stage. Remarkably, temperature plays a crucial role in driving the growth patterns, moving from coalescence of dendritic islands at room temperature to induce nearly 1D rows along the step-edges of HOPG terraces at higher temperatures (400 °C)

    The inhibition of 45A ncRNA expression reduces tumor formation, affecting tumor nodules compactness and metastatic potential in neuroblastoma cells

    Get PDF
    open16noWe recently reported the in vitro over-expression of 45A, a RNA polymerase IIItranscribed non-coding (nc)RNA, that perturbs the intracellular content of FE65L1 affecting cell proliferation rate, short-term response to genotoxic stress, substrate adhesion capacity and, ultimately, increasing the tumorigenic potential of human neuroblastoma cells. In this work, to deeply explore the mechanism by which 45A ncRNA contributes to cancer development, we targeted in vitro and in vivo 45A levels by the stable overexpression of antisense 45A RNA. 45A downregulation leads to deep modifications of cytoskeleton organization, adhesion and migration of neuroblastoma cells. These effects are correlated with alterations in the expression of several genes including GTSE1 (G2 and S phaseexpressed- 1), a crucial regulator of tumor cell migration and metastatic potential. Interestingly, the downregulation of 45A ncRNA strongly affects the in vivo tumorigenic potential of SKNBE2 neuroblastoma cells, increasing tumor nodule compactness and reducing GTSE1 protein expression in a subcutaneous neuroblastoma mouse model. Moreover, intracardiac injection of neuroblastoma cells showed that downregulation of 45A ncRNA also influences tumor metastatic ability. In conclusion, our data highlight a key role of 45A ncRNA in cancer development and suggest that its modulation might represent a possible novel anticancer therapeutic approach.openPenna, Ilaria; Gigoni, Arianna; Costa, Delfina; Vella, Serena; Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, AldoPenna, Ilaria; Gigoni, Arianna; Costa, Delfina; Vella, SERENA LUISA; Russo, Debora; Poggi, Alessandro; Villa, Federico; Brizzolara, Antonella; Canale, Claudio; Mescola, Andrea; Daga, Antonio; Russo, Claudio; Nizzari, Mario; Florio, Tullio; Menichini, Paola; Pagano, Ald

    Etude AFM du récepteur à la pénicilline BlaR1 de Bacillus licheniformis

    Full text link
    In presence of β-lactamines, some strains of B. licheniformis secret a β-lactamase that hydrolyses the antibiotic, making the bacteria resistant to penicillin. Staphylococcus aureus possesses a very similar system, allowing the expression of a β-lactamase in response to the presence of antibiotic outside the cell . In both strains, cells are able to sense the antibiotic in the medium through a membrane penicillin receptor BlaR1. Up to now, the 3D structure addressing the receptor in its entire form is not available, mainly due to low production yields and degradation. Here we show production, purification and reconstitution of the entire membrane protein in a lipid bilayer and a first AFM study of intra-molecular forces involved in the activation process of BlaR1.ARC NetRB

    AFM investigation of mechanical properties of glioblastoma multiforme cells and their relation to motility

    No full text
    Glial tumors are clinically classified in 4 groups according to their malignancy level. Glial tumors belonging to the IV group are called Glioblastoma Multiforme (GBM) and they are among the most aggressive brain tumors. In the recent years the mechanical phenotype of cells has been recognized as a valuable marker of their malignancy level [1-3]. Here we studied by AFM the mechanical behavior of U87mg cells when exposed to a drug which interferes with their cytoskeleton affecting also their migration ability. We found that U87mg cells exposed to the tested drug presented a decreased migration potential which is correlated with an increased stiffness of the cells and with a loss of polarity. By exploiting AFM Dynamic Mechanical Analysis we also characterized the behavior of the cells for different probing frequencies. By exploiting immunofluorescence microscopy we also investigated the effect of the tested drug on the reorganization of the cell cytoskeleton finding a strong increase of the presence of stress fibers

    Effects of the peptide Magainin H2 on Supported Lipid Bilayers studied by different biophysical techniques

    No full text
    Given the increasing trend in bacterial antibiotic resistance, research on antimicrobial peptides and their mechanisms of action has become of huge relevance in the last years. Several studies have investigated the effects of a large variety of antimicrobial peptides directly on bacteria or on model lipid bilayers. In the case of model lipid bilayers, different systems are typically exploited; however, different results could be obtained due to the specific properties of the used system. Supported Lipid Bilayers and Giant Unilamellar Vesicles are among the most popular model systems. Here we used Atomic Force Microscopy and fluorescence microscopy to study the interaction of the antimicrobial peptide Magainin H2, an analog of Magainin 2 with increased hydrophobicity, on Supported Lipid Bilayers. We found that, for this kind of model bilayer, due to its strong interaction with the support, the lateral expansion of the membrane induced by the interaction with the peptides is initially inhibited and subsequently proceeds creating new bilayer regions with many defects. This scenario gives rise in Supported Lipid Bilayers to effects like initial increase of lateral pressure, formation of lipid tubes to release this increase, or development of bilayer regions with lower lipid density. Our results highlight that care should be given to the selected model system when studying and comparing the interaction of peptides with other lipid bilayer model systems
    corecore