127 research outputs found

    A randomized study of pomalidomide vs placebo in persons with myeloproliferative neoplasm-associated myelofibrosis and RBC-transfusion dependence

    Get PDF
    RBC-transfusion dependence is common in persons with myeloproliferative neoplasm (MPN)-associated myelofibrosis. The objective of this study was to determine the rates of RBC-transfusion independence after therapy with pomalidomide vs placebo in persons with MPN-associated myelofibrosis and RBC-transfusion dependence. Two hundred and fifty-two subjects (intent-to-treat (ITT) population) including 229 subjects confirmed by central review (modified ITT population) were randomly assigned (2:1) to pomalidomide or placebo. Trialists and subjects were blinded to treatment allocation. Primary end point was proportion of subjects achieving RBC-transfusion independence within 6 months. One hundred and fifty-two subjects received pomalidomide and 77 placebo. Response rates were 16% (95% confidence interval (CI), 11, 23%) vs 16% (8, 26% P=0.87). Response in the pomalidomide cohort was associated with β©½4 U RBC/28 days (odds ratio (OR)=3.1; 0.9, 11.1), age β©½65 (OR=2.3; 0.9, 5.5) and type of MPN-associated myelofibrosis (OR=2.6; 0.7, 9.5). Responses in the placebo cohort were associated with β©½4 U RBC/28 days (OR=8.6; 0.9, 82.3), white blood cell at randomization >25 Γ— 10(9)/l (OR=4.9; 0.8, 28.9) and interval from diagnosis to randomization >2 years (OR=4.9; 1.1, 21.9). Pomalidomide was associated with increased rates of oedema and neutropenia but these adverse effects were manageable. Pomalidomide and placebo had similar RBC-transfusion-independence response rates in persons with MPN-associated RBC-transfusion dependence

    Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts

    Get PDF
    A total of 410 patients with blast phase myeloproliferative neoplasm (MPN-BP) were retrospectively reviewed: 248 from the Mayo Clinic and 162 from Italy. Median survival was 3.6 months, with no improvement over the last 15 years. Multivariable analysis performed on the Mayo cohort identified high risk karyotype, platelet count < 100 Γƒβ€” 109 /L, age > 65 years and transfusion need as independent risk factors for survival. Also in the Mayo cohort, intensive chemotherapy resulted in complete remission (CR) or CR with incomplete count recovery (CRi) rates of 35 and 24%, respectively; treatment-specified 3-year/5-year survival rates were 32/10% for patients receiving allogeneic stem cell transplant (AlloSCT) (n = 24), 19/13% for patients achieving CR/CRi but were not transplanted (n = 24), and 1/1% in the absence of both AlloSCT and CR/CRi (n = 200) (p < 0.01). The survival impact of AlloSCT (HR 0.2, 95% CI 0.1Γ’β‚¬β€œ0.3), CR/CRi without AlloSCT (HR 0.3, 95% CI 0.2Γ’β‚¬β€œ0.5), high risk karyotype (HR 1.6, 95% CI 1.1Γ’β‚¬β€œ2.2) and platelet count < 100 Γƒβ€” 109 /L (HR 1.6, 95% CI 1.1Γ’β‚¬β€œ2.2) were confirmed to be interindependent. Similar observations were made in the Italian cohort. The current study identifies the setting for improved short-term survival in MPN-BP, but also highlights the limited value of current therapy, including AlloSCT, in securing long-term survival

    IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F

    Get PDF
    Isocitrate dehydrogenase (IDH) mutations are frequent in blast-phase myeloproliferative neoplasms and might therefore contribute to leukemic transformation. We examined this possibility in 301 consecutive patients with chronic-phase primary myelofibrosis (PMF). The mutant IDH was detected in 12 patients (4%): 7 IDH2 (5 R140Q, 1 R140W and 1 R172G) and 5 IDH1 (3 R132S and 2 R132C). In all, 6 (50%) of the 12 IDH-mutated patients also expressed JAK2V617F. Overall, 18 (6%) patients displayed only MPL and 164 (54.3%) only JAK2 mutations. Multivariable analysis that accounted for conventional risk factors disclosed inferior overall survival (OS; P=0.03) and leukemia-free survival (LFS; P=0.003) in IDH-mutated patients: OS hazard ratio (HR) was 0.39 (95% confidence interval (95% CI) 0.2–0.75), 0.50 (95% CI 0.27–0.95) and 0.53 (95% CI 0.23–1.2) for patients with no, JAK2 or MPL mutations, respectively. Further analysis disclosed a more pronounced effect for the mutant IDH on OS and LFS in the presence (P=0.0002 and P<0.0001, respectively) as opposed to the absence (P=0.34 and P=0.64) of concomitant JAK2V617F. Analysis of paired samples obtained during chronic- and blast-phase disease revealed the presence of both IDH and JAK2 mutations at both time points. Our observations suggest that IDH mutations in PMF are independent predictors of leukemic transformation and raise the possibility of leukemogenic collaboration with JAK2V617F

    How I treat splenomegaly in myelofibrosis

    Get PDF
    Symptomatic splenomegaly, a frequent manifestation of myelofibrosis (MF), represents a therapeutic challenge. It is frequently accompanied by constitutional symptoms and by anemia or other cytopenias, which make treatment difficult, as the latter are often worsened by most current therapies. Cytoreductive treatment, usually hydroxyurea, is the first-line therapy, being effective in around 40% of the patients, although the effect is often short lived. The immunomodulatory drugs, such as thalidomide or lenalidomide, rarely show a substantial activity in reducing the splenomegaly. Splenectomy can be considered in patients refractory to drug treatment, but the procedure involves substantial morbidity as well as a certain mortality risk and, therefore, patient selection is important. For patients not eligible for splenectomy, transient relief of the symptoms can be obtained with local radiotherapy that, in turn, can induce severe and long-lasting cytopenias. Allogeneic hemopoietic stem cell transplantation is the only treatment with the potential for curing MF but, due to its associated morbidity and mortality, is usually restricted to a minority of patients with poor risk features. A new class of drugs, the JAK2 inhibitors, although also palliative, are promising in the splenomegaly of MF and will probably change the therapeutic algorithm of this disease

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs

    Splenectomy Normalizes Hematocrit in Murine Polycythemia Vera

    Get PDF
    Splenic enlargement (splenomegaly) develops in numerous disease states, although a specific pathogenic role for the spleen has rarely been described. In polycythemia vera (PV), an activating mutation in Janus kinase 2 (JAK2V617) induces splenomegaly and an increase in hematocrit. Splenectomy is sparingly performed in patients with PV, however, due to surgical complications. Thus, the role of the spleen in the pathogenesis of human PV remains unknown. We specifically tested the role of the spleen in the pathogenesis of PV by performing either sham (SH) or splenectomy (SPL) surgeries in a murine model of JAK2V617F-driven PV. Compared to SH-operated mice, which rapidly develop high hematocrits after JAK2V617F transplantation, SPL mice completely fail to develop this phenotype. Disease burden (JAK2V617) is equivalent in the bone marrow of SH and SPL mice, however, and both groups develop fibrosis and osteosclerosis. If SPL is performed after PV is established, hematocrit rapidly declines to normal even though myelofibrosis and osteosclerosis again develop independently in the bone marrow. In contrast, SPL only blunts hematocrit elevation in secondary, erythropoietin-induced polycythemia. We conclude that the spleen is required for an elevated hematocrit in murine, JAK2V617F-driven PV, and propose that this phenotype of PV may require a specific interaction between mutant cells and the spleen

    Deactylase inhibition in myeloproliferative neoplasms

    Get PDF
    Myeloproliferative neoplasms (MPN) are clonal haemopoietic progenitor cell disorders characterized by the proliferation of one or more of the haemopoietic lineages (myeloid, erythroid and/or megakaryocytic). The MPNs include eight haematological disorders: chronic myelogenous leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), systemic mastocytosis (SM), chronic eosinophilic leukemia, not otherwise specified (CEL, NOS), chronic neutrophilic leukemia (CNL), and unclassifiable MPN (MPN, U). Therapeutic interventions for MPNs include the use of tyrosine kinase inhibitors (TKIs) for BCR-ABL1+ CML and JAK2 inhibitors for PV, ET and PMF. Histone deacetylase inhibitors (HDACi) are a novel class of drugs capable of altering the acetylation status of both histone and non-histone proteins, thereby affecting a repertoire of cellular functions in neoplastic cells including proliferation, differentiation, immune responses, angiogenesis and survival. Preliminary studies indicate that HDACi when used in combination with tyrosine kinase or JAK2 inhibitors may overcome resistance to the latter agents and enhance the pro-apoptotic effects on MPN cells. This review provides a review of pre-clinical and clinical studies that have explored the use of HDACi as potential therapeutics for MPNs
    • …
    corecore