202 research outputs found

    Spectator detection for the measurement of proton neutron interactions at ANKE

    Get PDF
    A telescope of three silicon detectors has been installed close to the internal target position of the ANKE spectrometer, which is situated inside the ultra-high vacuum of the COSY-Juelich light-ion storage ring. The detection and identification of slow protons and deuterons emerging from a deuterium cluster-jet target thus becomes feasible. A good measurement of the energy and angle of such a spectator proton (p_sp) allows one to identify a reaction as having taken place on the neutron in the target and then to determine the kinematical variables of the ion-neutron system on an event-by-event basis over a range of c.m. energies. The system has been successfully tested under laboratory conditions. By measuring the spectator proton in the p d to p_sp d pi^0 reaction in coincidence with a fast deuteron in the ANKE Forward Detector, values of the p n to d pi^0 total cross-section have been deduced. Further applications of the telescope include the determination of the luminosity and beam polarisation which are required for several experiments.Comment: 16 pages, 9 figure

    First results of meteor radar lower thermosphere wind measurements at Dixon, Arctic (73.5γ‚œN, 80γ‚œE)

    Get PDF
    Results of simultaneous wind measurements by the identical meteor radars at Dixon (73.5Β°N, 80Β°E) and Obninsk (55Β°N, 37Β°E) are presented for the time interval from November 12, 1999 to July 31, 2000. A number of features were observed which require comprehensive investigation on the basis of long-term wind measurements in the high-latitude lower thermosphere. The observed semidiurnal tide phases at Dixon are close to those published for Troms0, providing some evidence for predominance of the migrating semidiurnal tide for semidiurnal oscillations at this latitude. Highly coherent oscillations in tidal amplitudes and prevailing winds were also revealed, as well as time intervals with non-significant semidiurnal tide during which oscillations with periods different from but close to 12 h were observed

    The summertime 12-h wind oscillation with zonal wavenumber <i>s</i> = 1 in the lower thermosphere over the South Pole

    No full text
    International audienceMeteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s=1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s=1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5?10 ms?1) during early January and maxima (15?20 ms?1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4?6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (Β±5?10 ms?1 in amplitude) with distinct periods (i.e., ~5 days and ~8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78Β°S is s=1, but that at 68Β°S there is probably a mixture between s=1 and other zonal wavenumber oscillations (most probably s=2). The mechanism responsible for the existence of the 12-h s=1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s=1 feature, and thermal excitation in the troposphere

    Intradiurnal wind variations observed in the lower thermosphere over the South Pole

    Get PDF

    Climatological lower thermosphere winds as seen by ground-based and space-based instruments

    Get PDF
    Comparisons are made between climatological dynamic fields obtained from ground-based (GB) and space-based (SB) instruments with a view towards identifying SB/GB intercalibration issues for TIMED and other future aeronomy satellite missions. SB measurements are made from the High Resolution Doppler Imager (HRDI) instrument on the Upper Atmosphere Research Satellite (UARS). The GB data originate from meteor radars at Obninsk, (55Β° N, 37Β° E), Shigaraki (35Β° N, 136Β° E) and Jakarta (6Β° S, 107Β° E) and MF spaced-antenna radars at Hawaii (22Β° N, 160Β° W), Christmas I. (2Β° N, 158Β° W) and Adelaide (35Β° S, 138Β° E). We focus on monthly-mean prevailing, diurnal and semidiurnal wind components at 96km, averaged over the 1991-1999 period. We perform space-based (SB) analyses for 90Β° longitude sectors including the GB sites, as well as for the zonal mean. Taking the monthly prevailing zonal winds from these stations as a whole, on average, SB zonal winds exceed GB determinations by ~63%, whereas meridional winds are in much better agreement. The origin of this discrepancy remains unknown, and should receive high priority in initial GB/SB comparisons during the TIMED mission. We perform detailed comparisons between monthly climatologies from Jakarta and the geographically conjugate sites of Shigaraki and Adelaide, including some analyses of interannual variations. SB prevailing, diurnal and semidiurnal tides exceed those measured over Jakarta by factors, on the average, of the order of 2.0, 1.6, 1.3, respectively, for the eastward wind, although much variability exists. For the meridional component, SB/GB ratios for the diurnal and semidiurnal tide are about 1.6 and 1.7. Prevailing and tidal amplitudes at Adelaide are significantly lower than SB values, whereas similar net differences do not occur at the conjugate Northern Hemisphere location of Shigaraki. Adelaide diurnal phases lag SB phases by several hours, but excellent agreement between the two data sources exists for semidiurnal tidal phases throughout the year. These results are consistent with phase retardation effects in the MF radar technique that are thought to exist above about 90km. Prevailing and tidal amplitudes from Shigaraki track year-to-year variations in SB fields, whereas in the Southern Hemisphere poorer agreement exists. The above hemispheric differences are due in part to MF vs. meteor radar techniques, but zonal asymmetries and day-to-day variability, combined with inadequate sampling, may also be playing a role. Based on these results, some obvious recommendations emerge that are relevant to combined GB/SB studies as part of TIMED and other future aeronomy missions.J. M. Forbes, Yu. I. Portnyagin, W. Skinner, R. A. Vincent, T. Solovjova, E. Merzlyakov, T. Nakamura, and S. Pal

    Transient eastward-propagating long-period waves observed over the South Pole

    Get PDF

    High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    No full text
    International audienceResults from the analysis of MLT wind measurements at Dixon (73.5Β°N, 80Β°E), Esrange (68Β°N, 21Β°E), Castle Eaton (UK) (53Β°N, 2Β°W), and Obninsk (55Β°N, 37Β°E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51?53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205), we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47?48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47?48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher) zonal wave-number components increase (decrease) with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47?48h and the 9?10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6?7day wave with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting mechanism for this decoupling is the Rossby wave instability (e.g. Baines, 1976). This result is consistent with the day-to-day wind variability during the observed QTDW events. An interesting feature of the final stage of the observed QTDW activity in summer 2000 is the occurrence of strong 4?5 day waves with S=3. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; general or miscellaneous

    ΠžΡ†Π΅Π½ΠΊΠ° антиоксидантной активности экстрактов ΠΈΠ· морских водорослСй Японского моря in vitro ΠΈ in vivo

    Get PDF
    ΠœΠΎΡ€ΡΠΊΠΈΠ΅ водоросли ΡΠ²Π»ΡΡŽΡ‚ΡΡ источником Π²Π°ΠΆΠ½Ρ‹Ρ… биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… соСдинСний β€” Π»ΠΈΠΏΠΈΠ΄ΠΎΠ², аминокислот, Ρ„Π΅Π½ΠΎΠ»ΠΎΠ², полисахаридов ΠΈ Π΄Ρ€. ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ вСщСств морского происхоТдСния ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Π΅ соСдинСния, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ высокой антиоксидантной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ морских ΠΌΠ°ΠΊΡ€ΠΎΡ„ΠΈΡ‚ΠΎΠ², Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠΌ быстро Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° внСшний стрСсс ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΉ состав Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ экстракта ΠΈΠ· водорослСй обусловливаСт ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр Π΅Ρ‘ фармакологичСской активности, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ влияниС Π½Π° многочислСнныС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ гомСостаза ΠΏΡ€ΠΈ патологичСских процСссах Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠŸΡ€ΠΈ этом ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ΡΡ возмоТности практичСского использования экстрактов ΠΈΠ· водорослСй Π΅Ρ‰Ρ‘ Π½Π΅ исчСрпаны, Ρ‡Ρ‚ΠΎ прСдставляСт нСсомнСнный интСрСс для соврСмСнной Π½Π°ΡƒΠΊΠΈ. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ β€” Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ антиоксидантной активности Π²ΠΎΠ΄Π½ΠΎ-спиртовых экстрактов, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· Ρ‚Π°Π»Π»ΠΎΠΌΠΎΠ² прСдставитСлСй Ρ‚Ρ€Ρ‘Ρ… классов водорослСй [Π±ΡƒΡ€Ρ‹Ρ… (Sargassum pallidum), Π·Π΅Π»Ρ‘Π½Ρ‹Ρ… (Ulva lactuca) ΠΈ красных (Ahnfeltia fastigiata var. tobuchiensis)], Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… влияниС Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΏΡ€ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌ стрСссС. Водоросли собирали Π² Π»Π΅Ρ‚Π½ΠΈΠ΅ мСсяцы Π² ΠΏΡ€ΠΈΠ±Ρ€Π΅ΠΆΠ½Ρ‹Ρ… Π²ΠΎΠ΄Π°Ρ… Π·Π°Π»ΠΈΠ²Π° ΠŸΠ΅Ρ‚Ρ€Π° Π’Π΅Π»ΠΈΠΊΠΎΠ³ΠΎ Японского моря, Π·Π°Ρ‚Π΅ΠΌ ΡΡƒΡˆΠΈΠ»ΠΈ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΠΊΠΎΠ»ΠΎ +50 Β°C, ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π°Π»ΠΈ Π½Π° Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ†Π΅ Π΄ΠΎ частиц Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 0,5–1 ΠΌΠΌ ΠΈ экстрагировали 70%-Π½Ρ‹ΠΌ этиловым спиртом ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСпСрколяции. НаибольшСС количСство ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΠΎΠ² ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π² экстрактС Π±ΡƒΡ€ΠΎΠΉ водоросли S. pallidum β€” (218,2 Β± 20,3) ΠΌΠ³-экв Π“ΠšΒ·Π³βˆ’1 сухого вСса. Π’ экстрактС Π·Π΅Π»Ρ‘Π½ΠΎΠΉ водоросли U. lactuca Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ этого показатСля составляло (16,2 Β± 1,8) ΠΌΠ³-экв Π“ΠšΒ·Π³βˆ’1 сухого вСса, Π² экстрактС красной водоросли A. fastigiata var. tobuchiensis β€” (9,1 Β± 1,6) ΠΌΠ³-экв Π“ΠšΒ·Π³βˆ’1 сухого вСса. БоотвСтствСнно, Π°Π½Ρ‚ΠΈΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ экстракта S. pallidum ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΊΠ°Ρ‚ΠΈΠΎΠ½-Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρƒ 2,2’-Π°Π·ΠΈΠ½ΠΎ-бис(3-этилбСнзотиазолин-6-ΡΡƒΠ»ΡŒΡ„ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты) (ABTS+) ΠΈ Π°Π»ΠΊΠΈΠ»ΠΏΠ΅Ρ€ΠΎΠΊΡΠΈΠ»ΡŒΠ½ΠΎΠΌΡƒ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρƒ Π±Ρ‹Π»Π° сущСствСнно Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ таковая экстрактов U. lactuca ΠΈ A. fastigiata var. tobuchiensis. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° с Ρ†Π΅Π»ΡŒΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ влияниС исслСдуСмых экстрактов водорослСй Π½Π° ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΌΡ‹ΡˆΠ΅ΠΉ Π² условиях острого стрСсса. Π’ Π·Π°Π΄Π°Ρ‡ΠΈ экспСримСнта Π²Ρ…ΠΎΠ΄ΠΈΠ»ΠΎ установлСниС вСсовых ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ (вСс ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, индСкс массы Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ²) ΠΈ биохимичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² (ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π°Π½Ρ‚ΠΈΡ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ активности, содСрТаниС ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ диальдСгида ΠΈ восстановлСнного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π°, Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ антиоксидантных Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²). ЭкспСримСнт ΠΏΠΎ стрСссовому Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° Π±Π΅Π»Ρ‹Ρ… бСспородных ΠΌΡ‹ΡˆΠ°Ρ…-самцах массой 20–30 Π³. ΠžΡΡ‚Ρ€Ρ‹ΠΉ стрСсс ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡƒΡ‚Ρ‘ΠΌ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ фиксации ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π·Π° Π΄ΠΎΡ€ΡΠ°Π»ΡŒΠ½ΡƒΡŽ ΡˆΠ΅ΠΉΠ½ΡƒΡŽ складку Π½Π° 24 Ρ‡. ΠžΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Ρ‘Π½Π½Ρ‹Π΅ ΠΎΡ‚ спирта экстракты водорослСй Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ Π²ΠΎΠ΄Π½ΠΎΠΉ взвСси Π² Π΄ΠΎΠ·Π΅ 100 ΠΌΠ³ ΠΎΠ±Ρ‰ΠΈΡ… ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΠΎΠ² Π½Π° ΠΊΠ³ массы Ρ‚Π΅Π»Π° Π² ΠΆΠ΅Π»ΡƒΠ΄ΠΎΠΊ ΠΌΡ‹ΡˆΠ°ΠΌ Ρ‡Π΅Ρ€Π΅Π· Π·ΠΎΠ½Π΄ Π΄Π²Π°ΠΆΠ΄Ρ‹ β€” нСпосрСдствСнно ΠΏΠ΅Ρ€Π΅Π΄ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ фиксациСй ΠΈ спустя 6 Ρ‡. Π–ΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ «стрСсс» Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π΄ΠΈΡΡ‚ΠΈΠ»Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΡƒΡŽ Π²ΠΎΠ΄Ρƒ Π² ΠΎΠ±ΡŠΡ‘ΠΌΠ΅, Ρ€Π°Π²Π½ΠΎΠΌ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ². Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΎΡΠ²ΠΈΠ»ΠΈΡΡŒ всС Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Ρ‹ стрСсса: гипСртрофия Π½Π°Π΄ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΈΠΊΠΎΠ², ΠΈΠ½Π²ΠΎΠ»ΡŽΡ†ΠΈΡ тимуса ΠΈ сСлСзёнки, изъязвлСния слизистой ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°. Π’Π°ΠΊΠΆΠ΅ Π±Ρ‹Π»ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ систСмы антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ°Π»ΠΈΡΡŒ Π² сниТСнии активности антиоксидантных Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ содСрТания восстановлСнного Π³Π»ΡƒΡ‚Π°Ρ‚ΠΈΠΎΠ½Π° Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ уровня ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ диальдСгида. Под дСйствиСм экстрактов Π²ΠΎ всСх Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π½Π° Ρ„ΠΎΠ½Π΅ стрСсса прослСТСна тСндСнция ΠΊ стабилизации исслСдуСмых ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹. ΠŸΡ€ΠΈ этом ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… экстракты ΠΈΠ· U. lactuca ΠΈ A. fastigiata var. tobuchiensis, уступали Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… экстракт S. pallidum. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π°Π²ΡˆΠΈΡ… экстракт S. pallidum, Π² показатСлях антиоксидантной Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π½Π΅ Π±Ρ‹Π»ΠΎ выявлСно достовСрных ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΉ ΠΎΡ‚ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π”Π°Π½Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ обусловлСн Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ основными ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π·Π΅Π»Ρ‘Π½Ρ‹Ρ… ΠΈ красных водорослСй ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Π΅ Ρ„Π»Π°Π²ΠΎΠ½ΠΎΠΈΠ΄Ρ‹, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² Π±ΡƒΡ€Ρ‹Ρ… водорослях ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ высокомолСкулярныС Ρ„Π»ΠΎΡ€ΠΎΡ‚Π°Π½Π½ΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π°Π½Ρ‚ΠΈΠΎΠΊΡΠΈΠ΄Π°Π½Ρ‚Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Ρ‡Π΅ΠΌ низкомолСкулярныС ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π·Π΅Π»Ρ‘Π½Ρ‹Ρ… ΠΈ красных водорослСй
    • …
    corecore