147 research outputs found
Genetic modification of Bluetongue virus by uptake of "synthetic" genome segments
Since 1998, several serotypes of Bluetongue virus (BTV) have invaded several southern European countries. In 2006, the unknown BTV serotype 8 (BTV8/net06) unexpectedly invaded North-West Europe and has resulted in the largest BT-outbreak ever recorded. More recently, in 2008 BTV serotype 6 was reported in the Netherlands and Germany. This virus, BTV6/net08, is closely related to modified-live vaccine virus serotype 6, except for genome segment S10. This genome segment is closer related to that of vaccine virus serotype 2, and therefore BTV6/net08 is considered as a result of reassortment. Research on orbiviruses has been hampered by the lack of a genetic modification method. Recently, reverse genetics has been developed for BTV based on ten in vitro synthesized genomic RNAs. Here, we describe a targeted single-gene modification system for BTV based on the uptake of a single in vitro synthesized viral positive-stranded RNA. cDNAs corresponding to BTV8/net06 genome segments S7 and S10 were obtained by gene synthesis and cloned downstream of the T7 RNA-polymerase promoter and upstream of a unique site for a restriction enzyme at the 3'-terminus for run-off transcription. Monolayers of BSR cells were infected by BTV6/net08, and subsequently transfected with purified in vitro synthesized, capped positive-stranded S7 or S10 RNA from BTV8/net06 origin. "Synthetic" reassortants were rescued by endpoint dilutions, and identified by serotype-specific PCR-assays for segment 2, and serogroup-specific PCRs followed by restriction enzyme analysis or sequencing for S7 and S10 segments. The targeted single-gene modification system can also be used to study functions of viral proteins by uptake of mutated genome segments. This method is also useful to generate mutant orbiviruses for other serogroups of the genus Orbivirus for which reverse genetics has not been developed yet
Identification and Differentiation of the Twenty Six Bluetongue Virus Serotypes by RTβPCR Amplification of the Serotype-Specific Genome Segment 2
Bluetongue (BT) is an arthropod-borne viral disease, which primarily affects ruminants in tropical and temperate regions of the world. Twenty six bluetongue virus (BTV) serotypes have been recognised worldwide, including nine from Europe and fifteen in the United States. Identification of BTV serotype is important for vaccination programmes and for BTV epidemiology studies. Traditional typing methods (virus isolation and serum or virus neutralisation tests (SNT or VNT)) are slow (taking weeks, depend on availability of reference virus-strains or antisera) and can be inconclusive. Nucleotide sequence analyses and phylogenetic comparisons of genome segment 2 (Seg-2) encoding BTV outer-capsid protein VP2 (the primary determinant of virus serotype) were completed for reference strains of BTV-1 to 26, as well as multiple additional isolates from different geographic and temporal origins. The resulting Seg-2 database has been used to develop rapid (within 24 h) and reliable RTβPCR-based typing assays for each BTV type. Multiple primer-pairs (at least three designed for each serotype) were widely tested, providing an initial identification of serotype by amplification of a cDNA product of the expected size. Serotype was confirmed by sequencing of the cDNA amplicons and phylogenetic comparisons to previously characterised reference strains. The results from RT-PCR and sequencing were in perfect agreement with VNT for reference strains of all 26 BTV serotypes, as well as the field isolates tested. The serotype-specific primers showed no cross-amplification with reference strains of the remaining 25 serotypes, or multiple other isolates of the more closely related heterologous BTV types. The primers and RTβPCR assays developed in this study provide a rapid, sensitive and reliable method for the identification and differentiation of the twenty-six BTV serotypes, and will be updated periodically to maintain their relevance to current BTV distribution and epidemiology (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/rt-pcr-primers.htm)
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Complete Genome Characterisation of a Novel 26th Bluetongue Virus Serotype from Kuwait
Bluetongue virus is the βtypeβ species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing βbluetongueβ (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen βVP7β showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein βVP2β identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other βeasternβ or βwesternβ BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection
Development and evaluation of real time RT-PCR assays for detection and typing of Bluetongue virus
Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple βTaqManβ fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the βOrbivirus Reference Collectionβ (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures
Detection of a Fourth Orbivirus Non-Structural Protein
The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1βVP7) and 3 non-structural proteins (NS1βNS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4
Identification and characterization of a novel non-structural protein of bluetongue virus
Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77β79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell
Ciliated Epithelial Cell Differentiation at Air-Liquid Interface Using Commercially Available Culture Media
The human nasal epithelium contains basal stem/progenitor cells that produce differentiated multiciliated and mucosecretory progeny. Basal epithelial cells can be expanded in cell culture and instructed to differentiate at an air-liquid interface using transwell membranes and differentiation media. For basal cell expansion, we have used 3T3-J2 co-culture in epithelial culture medium containing EGF, insulin, and a RHO-associated protein kinase (ROCK) inhibitor, Y-27632 (3T3 + Y). Here we describe our protocols for ciliated differentiation of these cultures at air-liquid interface and compare four commercially available differentiation media, across nine donor cell cultures (six healthy, two patients with chronic obstructive pulmonary disease (COPD), and one with primary ciliary dyskinesia (PCD)). Bright-field and immunofluorescence imaging suggested broad similarity between differentiation protocols. Subtle differences were seen in transepithelial electrical resistance (TEER), ciliary beat frequency, mucus production, and the extent to which basal cells are retained in differentiated cultures. Overall, the specific differentiation medium used in our air-liquid interface culture protocol was not a major determinant of ciliation, and our data suggest that the differentiation potential of basal cells at the outset is a more critical factor in air-liquid interface culture outcome. Detailed information on the constituents of the differentiation media was only available from one of the four manufacturers, a factor that may have profound implications in the interpretation of some research studies
Evolution and Phylogenetic Analysis of Full-Length VP3 Genes of Eastern Mediterranean Bluetongue Virus Isolates
Bluetongue virus (BTV) is the βtypeβ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979β2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an βeasternβ (BTV-9, -16 and -1) and a βwesternβ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe
Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species
The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses
- β¦